ترغب بنشر مسار تعليمي؟ اضغط هنا

First millimeter detection of the disk around a young, isolated, planetary-mass object

102   0   0.0 ( 0 )
 نشر من قبل Amelia Bayo M
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

OTS44 is one of only four free-floating planets known to have a disk. We have previously shown that it is the coolest and least massive known free-floating planet ($sim$12 M$_{rm Jup}$) with a substantial disk that is actively accreting. We have obtained Band 6 (233 GHz) ALMA continuum data of this very young disk-bearing object. The data shows a clear unresolved detection of the source. We obtained disk-mass estimates via empirical correlations derived for young, higher-mass, central (substellar) objects. The range of values obtained are between 0.07 and 0.63 M$_{oplus}$ (dust masses). We compare the properties of this unique disk with those recently reported around higher-mass (brown dwarfs) young objects in order to infer constraints on its mechanism of formation. While extreme assumptions on dust temperature yield disk-mass values that could slightly diverge from the general trends found for more massive brown dwarfs, a range of sensible values provide disk masses compatible with a unique scaling relation between $M_{rm dust}$ and $M_{*}$ through the substellar domain down to planetary masses.



قيم البحث

اقرأ أيضاً

91 - P. Delorme , T. Dupuy , J. Gagne 2017
We conducted a multi-wavelength, multi-instrument observational characterisation of the candidate free-floating planet CFBDSIR~J214947.2-040308.9, a late T-dwarf with possible low-gravity features, in order to constrain its physical properties. We an alyzed 9 hours of X-Shooter spectroscopy with signal detectable from 0.8--2.3$mu$m, as well as additional photometry in the mid-infrared using the Spitzer Space Telescope. Combined with a VLT/HAWK-I astrometric parallax, this enabled a full characterisation of the absolute flux from the visible to 5$mu$m, encompassing more than 90% of the expected energy emitted by such a cool late T-type object. Our analysis of the spectrum also provided the radial velocity and therefore the determination of its full 3-D kinematics. While our new spectrum confirms the low gravity and/or high metallicity of CFBDSIR2149, the parallax and kinematics safely rule out membership to any known young moving group, including AB~Doradus. We use the equivalent width of the KI doublet at 1.25$mu$m as a promising tool to discriminate the effects of low-gravity from the effects of high-metallicity on the emission spectra of cool atmospheres. In the case of CFBDSIR2149, the observed KI doublet clearly favours the low-gravity solution. CFBDSIR2149 is therefore a peculiar late-T dwarf that is probably a young, planetary-mass object (2--13Mjup, $<$500Myr) possibly similar to the exoplanet 51Erib, or perhaps a 2--40Mjup brown dwarf with super-solar metallicity.
We present the discovery of WISEA J083011.95+283716.0, the first Y dwarf candidate identified through the Backyard Worlds: Planet 9 citizen science project. We identified this object as a red, fast-moving source with a faint $W2$ detection in multi-e poch textit{AllWISE} and unWISE images. We have characterized this object with Spitzer Space Telescope and textit{Hubble Space Telescope} follow-up imaging. With mid-infrared detections in textit{Spitzer}s emph{ch1} and emph{ch2} bands and flux upper limits in Hubble Space Telescope $F105W$ and $F125W$ filters, we find that this object is both very faint and has extremely red colors ($ch1-ch2 = 3.25pm0.23$ mag, $F125W-ch2 geq 9.36$ mag), consistent with a T$_{eff}sim300$ K source, as estimated from the known Y dwarf population. A preliminary parallax provides a distance of $11.1^{+2.0}_{-1.5}$ pc, leading to a slightly warmer temperature of $sim350$ K. The extreme faintness and red Hubble Space Telescope and Spitzer Space Telescope colors of this object suggest it may be a link between the broader Y dwarf population and the coldest known brown dwarf WISE J0855$-$0714, and highlight our limited knowledge of the true spread of Y dwarf colors. We also present four additional Backyard Worlds: Planet 9 late-T brown dwarf discoveries within 30 pc.
We have obtained low-resolution optical (0.7-0.98 micron) and near-infrared (1.11-1.34 micron and 0.8-2.5 micron) spectra of twelve isolated planetary-mass candidates (J = 18.2-19.9 mag) of the 3-Myr sigma Orionis star cluster with a view to determin ing the spectroscopic properties of very young, substellar dwarfs and assembling a complete cluster mass function. We have classified our targets by visual comparison with high- and low-gravity standards and by measuring newly defined spectroscopic indices. We derived L0-L4.5 and M9-L2.5 using high- and low-gravity standards, respectively. Our targets reveal clear signposts of youth, thus corroborating their cluster membership and planetary masses (6-13 Mjup). These observations complete the sigma Orionis mass function by spectroscopically confirming the planetary-mass domain to a confidence level of $sim$75 percent. The comparison of our spectra with BT-Settl solar metallicity model atmospheres yields a temperature scale of 2350-1800 K and a low surface gravity of log g ~ 4.0 [cm/s2], as would be expected for young planetary-mass objects. We discuss the properties of the cluster least-massive population as a function of spectral type. We have also obtained the first optical spectrum of S Ori 70, a T dwarf in the direction of sigma Orionis. Our data provide reference optical and near-infrared spectra of very young L dwarfs and a mass function that may be used as templates for future studies of low-mass substellar objects and exoplanets. The extrapolation of the sigma Orionis mass function to the solar neighborhood may indicate that isolated planetary-mass objects with temperatures of 200-300 K and masses in the interval 6-13-Mjup may be as numerous as very low-mass stars.
The young and nearby star beta Pictoris (beta Pic) is surrounded by a debris disk composed of dust and gas known to host a myriad evaporating exocomets, planetesimals and at least one planet. At an edge-on inclination, as seen from Earth, this system is ideal for debris disk studies providing an excellent opportunity to use absorption spectroscopy to study the planet forming environment. Using the Cosmic Origins Spectrograph (COS) instrument on the Hubble Space Telescope (HST) we observe the most abundant element in the disk, hydrogen, through the HI Lyman alpha (Ly-alpha) line. We present a new technique to decrease the contamination of the Ly-alpha line by geocoronal airglow in COS spectra. This Airglow Virtual Motion (AVM) technique allows us to shift the Ly-alpha line of the astrophysical target away from the contaminating airglow emission revealing more of the astrophysical line profile. The column density of hydrogen in the beta Pic stable gas disk at the stellar radial velocity is measured to be $log(N_{mathrm{H}}/1 mathrm{cm}^2) ll 18.5$. The Ly-alpha emission line profile is found to be asymmetric and we propose that this is caused by HI falling in towards the star with a bulk radial velocity of $41pm6$ km/s relative to beta Pic and a column density of $log(N_{mathrm{H}}/1 mathrm{cm}^2) = 18.6pm0.1$. The high column density of hydrogen relative to the hydrogen content of CI chondrite meteorites indicates that the bulk of the hydrogen gas does not come from the dust in the disk. This column density reveals a hydrogen abundance much lower than solar, which excludes the possibility that the detected hydrogen could be a remnant of the protoplanetary disk or gas expelled by the star. We hypothesise that the hydrogen gas observed falling towards the star arises from the dissociation of water originating from evaporating exocomets.
Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key to understand the formation of nitrogen bearing species in early solar system analogs. So far, ammonia has not been detected beyond the snowline in protoplanetary disks. We aim to find gas-phase ammonia in a protoplanetary disk and characterize its abundance with respect to water vapor. Using HIFI on the Herschel Space Observatory we detect, for the first time, the ground-state rotational emission of ortho-NH$_3$ in a protoplanetary disk, around TW Hya. We use detailed models of the disks physical structure and the chemistry of ammonia and water to infer the amounts of gas-phase molecules of these species. We explore two radial distributions ( confined to $<$60 au like the millimeter-sized grains) and two vertical distributions (near the midplane where water is expected to photodesorb off icy grains) to describe the (unknown) location of the molecules. These distributions capture the effects of radial drift and vertical settling of ice-covered grains. We use physical-chemical models to reproduce the fluxes with assuming that water and ammonia are co-spatial. We infer ammonia gas-phase masses of 0.7-11.0 $times$10$^{21}$ g. For water, we infer gas-phase masses of 0.2-16.0 $times$10$^{22}$ g. This corresponds to NH$_3$/H$_2$O abundance ratios of 7%-84%, assuming that water and ammonia are co-located. Only in the most compact and settled adopted configuration is the inferred NH$_3$/H$_2$O consistent with interstellar ices and solar system bodies of $sim$ 5%-10%. Volatile release in the midplane may occur via collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, e.g., through growth of small grains into pebbles or larger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا