ﻻ يوجد ملخص باللغة العربية
IRS 7 is an M red supergiant star which is located at $5.5$ north of Sagittarius A$^ast$. We detected firstly the continuum emission at 340 GHz of IRS 7 using ALMA. The total flux density of IRS 7 is $S_ u=448pm45 mu$Jy. The flux density indicates that IRS 7 has a photosphere radius of $R=1170pm60 ~R_odot$, which is roughly consistent with the previous VLTI measurement. We also detected a shell like feature with north extension in the H30$alpha$ recombination line by ALMA. The electron temperature and electron density of the shell like structure are estimated to be $bar{T}^ast_{mathrm e}=4650pm500$ K and $bar{n}_{mathrm e}=(6.1pm0.6)times10^4$ cm$^{-3}$, respectively. The mass loss rate is estimated to be $dot{m} sim 1times 10^{-4} M_odot$ yr$^{-1}$, which is consistent with a typical mass loss rate of a pulsating red supergiant star with $M=20-25 M_odot$. The kinematics of the ionized gas would support the hypothesis that the shell like structure made by the mass loss of IRS 7 is supersonically traveling in the ambient matter toward the south. The brightened southern half of the structure and the north extension would be a bow shock and a cometary-like tail structure, respectively.
Debris disks can be seen as the left-overs of giant planet formation and the possible nurseries of rocky planets. While M-type stars out-number more massive stars we know very little about the time evolution of their circumstellar disks at ages older
We present the results of ALMA spectroscopic follow-up of a $z=6.765$ Lyman-$alpha$ emitting galaxy behind the cluster RXJ1347-1145. We report the detection of [CII]158$mu$m line fully consistent with the Lyman-$alpha$ redshift and with the peak of t
The ATOMS, standing for {it ALMA Three-millimeter Observations of Massive Star-forming regions}, survey has observed 146 active star forming regions with ALMA Band 3, aiming to systematically investigate the spatial distribution of various dense gas
ALMA observations of the Galactic center with spatial resolution $2.61times0.97$ resulted in the detection of 11 SiO (5-4) clumps of molecular gas within 0.6pc (15$$) of Sgr A*, interior to the 2-pc circumnuclear molecular ring. The three SiO (5-4) c
We report the discovery of 11 bipolar outflows within a projected distance of 1pc from Sgr A* based on deep ALMA observations of $^{13}$CO, H30$alpha$ and SiO (5-4) lines with sub-arcsecond and $sim1.3$ km/s, resolutions. These unambiguous signatures