ﻻ يوجد ملخص باللغة العربية
Getting inspired from swimming natural species, a lot of research is being carried out in the field of unmanned underwater vehicles. During the last two decades, more emphasis on the associated hydrodynamic mechanisms, structural dynamics, control techniques and, its motion and path planning has been prominently witnessed in the literature. Considering the importance of the involved acoustic mechanisms, we focus on the quantification of flow noise produced by an oscillating hydrofoil here employed as a kinematic model for fish or its relevant appendages. In our current study, we perform numerical simulations for flow over an oscillating hydrofoil for a wide range of flow and kinematic parameters. Using the Ffowcs-Williams and Hawkings (FW-H) method, we quantify the flow noise produced by a fish during its swimming for a range of kinematic and flow parameters including Reynolds number, reduced frequency, and Strouhal number. We find that the distributions of the sound pressure levels at the oscillating frequency and its first even harmonic due to the pressure fluctuations in the fluid domain are dipole-like patterns. The magnitudes of these sound pressure levels depend on the Reynolds number and Strouhal number, whereas the direction of their dipole-axes appears to be affected by the reduced frequency only. Moreover, We also correlate this emission of sound radiations with the hydrodynamic force coefficients.
We report on progress on the free surface flow in the presence of submerged oscillating line sources (2D) or point sources (3D) when a simple shear flow is present varying linearly with depth. Such sources are in routine use as Green functions in the
We quantify the strength of the waves and their impact on the energy cascade in rotating turbulence by studying the wave number and frequency energy spectrum, and the time correlation functions of individual Fourier modes in numerical simulations in
Harmonic oscillations of the walls of a turbulent plane channel flow are studied by direct numerical simulations to improve our understanding of the physical mechanism for skin-friction drag reduction. The simulations are carried out at constant pres
We numerically examine the mechanisms that describe the shock-boundary layer interactions in transonic flow past an oscillating wing section. At moderate and high angles of incidence but low amplitudes of oscillation, shock induced flow separation or
Analytical solutions in fluid dynamics can be used to elucidate the physics of complex flows and to serve as test cases for numerical models. In this work, we present the analytical solution for the acoustic boundary layer that develops around a rigi