ﻻ يوجد ملخص باللغة العربية
Analytical solutions in fluid dynamics can be used to elucidate the physics of complex flows and to serve as test cases for numerical models. In this work, we present the analytical solution for the acoustic boundary layer that develops around a rigid sphere executing small amplitude harmonic rectilinear motion in a compressible fluid. The mathematical framework that describes the primary flow is identical to that of wave propagation in linearly elastic solids, the difference being the appearance of complex instead of real valued wave numbers. The solution reverts to well-known classical solutions in special limits: the potential flow solution in the thin boundary layer limit, the oscillatory flat plate solution in the limit of large sphere radius and the Stokes flow solutions in the incompressible limit of infinite sound speed. As a companion analytical result, the steady second order acoustic streaming flow is obtained. This streaming flow is driven by the Reynolds stress tensor that arises from the axisymmetric first order primary flow around such a rigid sphere. These results are obtained with a linearization of the non-linear Navier-Stokes equations valid for small amplitude oscillations of the sphere. The streaming flow obeys a time-averaged Stokes equation with a body force given by the Nyborg model in which the above mentioned primary flow in a compressible Newtonian fluid is used to estimate the time-averaged body force. Numerical results are presented to explore different regimes of the complex transverse and longitudinal wave numbers that characterize the primary flow.
An analytical solution is proposed to predict the crown propagation, generated by a single droplet impact on wetted walls. This approach enables a smooth transition from the inertia-driven to the viscous-controlled regime of crown propagation. The mo
Getting inspired from swimming natural species, a lot of research is being carried out in the field of unmanned underwater vehicles. During the last two decades, more emphasis on the associated hydrodynamic mechanisms, structural dynamics, control te
In this paper we present a framework which provides an analytical (i.e., infinitely differentiable) transformation between spatial coordinates and orbital elements for the solution of the gravitational two-body problem. The formalism omits all singul
We present here a comprehensive derivation for the speed of a small bottom-heavy sphere forced by a transverse acoustic field and thereby establish how density inhomogeneities may play a critical role in acoustic propulsion. The sphere is trapped at
In this paper, we present an efficient, accurate and fully Lagrangian numerical solver for modeling wave interaction with oscillating wave energy converter (OWSC). The key idea is to couple SPHinXsys, an open-source multi-physics library in unified s