ﻻ يوجد ملخص باللغة العربية
We numerically examine the mechanisms that describe the shock-boundary layer interactions in transonic flow past an oscillating wing section. At moderate and high angles of incidence but low amplitudes of oscillation, shock induced flow separation or shock-stall is observed accompanied by shock reversal. Even though the power input to the airfoil by the viscous forces is three orders of magnitude lower than that due to the pressure forces on the airfoil, the boundary layer manipulates the shock location and shock motion and redistributes the power input to the airfoil by the pressure forces. The shock motion is reversed relative to that in an inviscid flow as the boundary layer cannot sustain an adverse pressure gradient posed by the shock, causing the shock to move upstream leading to an early separation. The shock motion shows a phase difference with reference to the airfoil motion and is a function of the frequency of the oscillation. At low angles of incidence, and low amplitudes of oscillation, the boundary layer changes the profile presented to the external flow, leads to a slower expansion of the flow resulting in an early shock, and a diffused shock-foot caused by the boundary layer.
A delayed detached eddy simulation (DDES) of an overexpanded nozzle flow with shock-induced separation is carried out at a Reynolds number equal to 1.7 10^7. The flow unsteadiness, characterised by self-sustained shock oscillations, induces local uns
We report an experimental observation of an instability in gas of constant density (air) with an initial non-uniform seeding of small droplets that develops as a planar shock wave passes through the gas-droplet mix. The seeding non-uniformity is prod
The dynamics of spherical laser-induced cavitation bubbles in water is investigated by plasma photography, time-resolved shadowgraphs, and single-shot probe beam scattering enabling to portray the transition from initial nonlinear to late linear osci
How to determine accurately and efficiently the aerodynamic forces of the aircraft in high-speed flow is one of great challenges in modern aerodynamics. In this Letter we propose a new similarity law for steady transonic-supersonic flow over thin bod
The transition of the vortex pattern and the lift generated by a heaving wing in a uniform flow was investigated numerically. Motivated by insects flight maneuverability, we studied the relationship between a temporal change in the heaving wing motio