ﻻ يوجد ملخص باللغة العربية
In this work, we adapt the formalism of the dynamical vertex approximation (D$Gamma$A), a diagrammatic approach including many-body correlations beyond the dynamical mean-field theory, to the case of attractive onsite interactions. We start by exploiting the ladder approximation of the D$Gamma$A scheme, in order to derive the corresponding equations for the non-local self-energy and vertex functions of the attractive Hubbard model. Second, we prove the validity of our derivation by showing that the results obtained in the particle-hole symmetric case fully preserve the exact mapping between the attractive and the repulsive models. It will be shown, how this property can be related to the structure of the ladders, which makes our derivation applicable for any approximation scheme based on ladder diagrams. Finally, we apply our D$Gamma$A algorithm to the attractive Hubbard model in three dimensions, for different fillings and interaction values. Specifically, we focus on the parameters region in the proximity of the second-order transition to the superconducting and charge-density wave phases, respectively, and calculate (i) their phase-diagrams, (ii) their critical behavior, as well as (iii) the effects of the strong non-local correlations on the single-particle properties.
We examine a central approximation of the recently introduced Dynamical Cluster Approximation (DCA) by example of the Hubbard model. By both analytical and numerical means we study non-compact and compact contributions to the thermodynamic potential.
We have implemented the dynamical vertex approximation (D$Gamma$A) in its full parquet-based version to include spatial correlations on all length scales and in {sl all} scattering channels. The algorithm is applied to study the electronic self-energ
In this thesis, I present a non-perturbative approach to the single-band attractive Hubard model which is an extension of previous work by Vilk and Tremblay on the repulsive model. Exact results are derived in the general context of functional deriva
We discuss the phase diagram of the extended Hubbard model with both attractive and repulsive local and nonlocal interactions. The extended dynamical mean-field theory (EDMFT) and the dual boson method (DB) are compared. The latter contains additiona
We use the Random Dispersion Approximation (RDA) to study the Mott-Hubbard transition in the Hubbard model at half band filling. The RDA becomes exact for the Hubbard model in infinite dimensions. We implement the RDA on finite chains and employ the