ﻻ يوجد ملخص باللغة العربية
We have implemented the dynamical vertex approximation (D$Gamma$A) in its full parquet-based version to include spatial correlations on all length scales and in {sl all} scattering channels. The algorithm is applied to study the electronic self-energies and the spectral properties of finite-size one-dimensional Hubbard models with periodic boundary conditions (nanoscopic Hubbard rings). From a methodological point of view, our calculations and their comparison to the results obtained within dynamical mean-field theory, plain parquet approximation, and the exact numerical solution, allow us to evaluate the performance of the D$Gamma$A algorithm in the most challenging situation of low dimensions. From a physical perspective, our results unveil how non-local correlations affect the spectral properties of nanoscopic systems of various sizes in different regimes of interaction strength.
In this work, we adapt the formalism of the dynamical vertex approximation (D$Gamma$A), a diagrammatic approach including many-body correlations beyond the dynamical mean-field theory, to the case of attractive onsite interactions. We start by exploi
We propose an approach for the ab initio calculation of materials with strong electronic correlations which is based on all local (fully irreducible) vertex corrections beyond the bare Coulomb interaction. It includes the so-called GW and dynamical m
Taking the competition and the mutual screening of various bosonic fluctuations in correlated electron systems into account requires an unbiased approach to the many-body problem. One such approach is the self-consistent solution of the parquet equat
We examine a central approximation of the recently introduced Dynamical Cluster Approximation (DCA) by example of the Hubbard model. By both analytical and numerical means we study non-compact and compact contributions to the thermodynamic potential.
We find that imposing the crossing symmetry in the iteration process considerably extends the range of convergence for solutions of the parquet equations for the Hubbard model. When the crossing symmetry is not imposed, the convergence of both simple