ﻻ يوجد ملخص باللغة العربية
We discuss the phase diagram of the extended Hubbard model with both attractive and repulsive local and nonlocal interactions. The extended dynamical mean-field theory (EDMFT) and the dual boson method (DB) are compared. The latter contains additional nonlocal correlation effects that are not incorporated in EDMFT. We find that EDMFT and DB give almost identical results in the attractive $V$ regime, where phase separation occurs. This is quite a difference with the previously studied repulsive $V$ regime, where EDMFT and DB give very different phase boundaries for the checkerboard order phase, especially at small $U$.
The extended Hubbard model with an attractive density-density interaction, positive pair hopping, or both, is shown to host topological phases, with a doubly degenerate entanglement spectrum and interacting edge spins. This constitutes a novel instan
In this work, we adapt the formalism of the dynamical vertex approximation (D$Gamma$A), a diagrammatic approach including many-body correlations beyond the dynamical mean-field theory, to the case of attractive onsite interactions. We start by exploi
A non-perturbative approach to the single-band attractive Hubbard model is presented in the general context of functional derivative approaches to many-body theories. As in previous work on the repulsive model, the first step is based on a local-fiel
The two-dimensional attractive Hubbard model is studied in the weak to intermediate coupling regime by employing a non-perturbative approach. It is first shown that this approach is in quantitative agreement with Monte Carlo calculations for both sin
We consider a modified extended Hubbard model (EHM) which, in addition to the on-site repulsion U and nearest-neighbor repulsion V, includes polarization effects in second-order perturbation theory. The model is equivalent to an EHM with renormalized