ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanowire Superinductance Fluxonium Qubit

174   0   0.0 ( 0 )
 نشر من قبل Thomas Hazard
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize a fluxonium qubit consisting of a Josephson junction inductively shunted with a NbTiN nanowire superinductance. We explain the measured energy spectrum by means of a multimode theory accounting for the distributed nature of the superinductance and the effect of the circuit nonlinearity to all orders in the Josephson potential. Using multiphoton Raman spectroscopy, we address multiple fluxonium transitions, observe multilevel Autler-Townes splitting and measure an excited state lifetime of $T_mathrm{1}=20$ $mu$s. By measuring $T_1$ at different magnetic flux values, we find a crossover in the lifetime limiting mechanism from capacitive to inductive losses.

قيم البحث

اقرأ أيضاً

Circuit quantum electrodynamics, where photons are coherently coupled to artificial atoms built with superconducting circuits, has enabled the investigation and control of macroscopic quantum-mechanical phenomena in superconductors. Recently, hybrid circuits incorporating semiconducting nanowires and other electrostatically-gateable elements have provided new insights into mesoscopic superconductivity. Extending the capabilities of hybrid flux-based circuits to work in magnetic fields would be especially useful both as a probe of spin-polarized Andreev bound states and as a possible platform for topological qubits. The fluxonium is particularly suitable as a readout circuit for topological qubits due to its unique persistent-current based eigenstates. In this Letter, we present a magnetic-field compatible hybrid fluxonium with an electrostatically-tuned semiconducting nanowire as its non-linear element. We operate the fluxonium in magnetic fields up to 1T and use it to observe the $varphi_0$-Josephson effect. This combination of gate-tunability and field-compatibility opens avenues for the exploration and control of spin-polarized phenomena using superconducting circuits and enables the use of the fluxonium as a readout device for topological qubits.
147 - U. Vool , A. Kou , W. C. Smith 2017
Atomic systems display a rich variety of quantum dynamics due to the different possible symmetries obeyed by the atoms. These symmetries result in selection rules that have been essential for the quantum control of atomic systems. Superconducting art ificial atoms are mainly governed by parity symmetry. Its corresponding selection rule limits the types of quantum systems that can be built using electromagnetic circuits at their optimal coherence operation points (sweet spots). Here, we use third-order nonlinear coupling between the artificial atom and its readout resonator to drive transitions forbidden by the parity selection rule for linear coupling to microwave radiation. A Lambda-type system emerges from these newly accessible transitions, implemented here in the fluxonium artificial atom coupled to its antenna resonator. We demonstrate coherent manipulation of the fluxonium artificial atom at its sweet spot by stimulated Raman transitions. This type of transition enables the creation of new quantum operations, such as the control and readout of physically protected artificial atoms.
70 - A. Kou , W. C. Smith , U. Vool 2016
Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artif icial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for protected qubits and quantum simulation.
As the energy relaxation time of superconducting qubits steadily improves, non-equilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum non-demolition projective measurements within a time interval much shorter than $T_1$, using a quantum limited amplifier (Josephson Parametric Converter). The quantum jumps statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in magnetic field.
The superconducting fluxonium circuit is an RF-SQUID-type flux qubit that uses a large inductance built from an array of Josephson junctions or a high kinetic inductance material. This inductance suppresses charge sensitivity exponentially and flux s ensitivity quadratically. In contrast to the transmon qubit, the anharmonicity of fluxonium can be large and positive, allowing for better separation between the low energy qubit manifold of the circuit and higher-lying excited states. Here, we propose a tunable coupling scheme for implementing two-qubit gates on fixed-frequency fluxonium qubits, biased at half flux quantum. In this system, both qubits and coupler are coupled capacitively and implemented as fluxonium circuits with an additional harmonic mode. We investigate the performance of the scheme by simulating a universal two-qubit fSim gate. In the proposed approach, we rely on a planar on-chip architecture for the whole device. Our design is compatible with existing hardware for transmon-based devices, with the additional advantage of lower qubit frequency facilitating high-precision gating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا