ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle Excitations

473   0   0.0 ( 0 )
 نشر من قبل Uri Vool
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As the energy relaxation time of superconducting qubits steadily improves, non-equilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum non-demolition projective measurements within a time interval much shorter than $T_1$, using a quantum limited amplifier (Josephson Parametric Converter). The quantum jumps statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in magnetic field.



قيم البحث

اقرأ أيضاً

We characterize a fluxonium qubit consisting of a Josephson junction inductively shunted with a NbTiN nanowire superinductance. We explain the measured energy spectrum by means of a multimode theory accounting for the distributed nature of the superi nductance and the effect of the circuit nonlinearity to all orders in the Josephson potential. Using multiphoton Raman spectroscopy, we address multiple fluxonium transitions, observe multilevel Autler-Townes splitting and measure an excited state lifetime of $T_mathrm{1}=20$ $mu$s. By measuring $T_1$ at different magnetic flux values, we find a crossover in the lifetime limiting mechanism from capacitive to inductive losses.
41 - Marc P. Roosli 2019
We measure the magneto-conductance through a micron-sized quantum dot hosting about 500 electrons in the quantum Hall regime. In the Coulomb blockade, when the island is weakly coupled to source and drain contacts, edge reconstruction at filling fact ors between one and two in the dot leads to the formation of two compressible regions tunnel coupled via an incompressible region of filling factor $ u=1$. We interpret the resulting conductance pattern in terms of a phase diagram of stable charge in the two compressible regions. Increasing the coupling of the dot to source and drain, we realize a Fabry-P{e}rot quantum Hall interferometer, which shows an interference pattern strikingly similar to the phase diagram in the Coulomb blockade regime. We interpret this experimental finding using an empirical model adapted from the Coulomb blockaded to the interferometer case. The model allows us to relate the observed abrupt jumps of the Fabry-P{e}rot interferometer phase to a change in the number of bulk quasiparticles. This opens up an avenue for the investigation of phase shifts due to (fractional) charge redistributions in future experiments on similar devices.
We evaluate the microwave admittance of a one-dimensional chain of fluxonium qubits coupled by shared inductors. Despite its simplicity, this system exhibits a rich phase diagram. A critical applied magnetic flux separates a homogeneous ground state from a phase with a ground state exhibiting inhomogeneous persistent currents. Depending on the parameters of the array, the phase transition may be a conventional continuous one, or of a commensurate-incommensurate nature. Furthermore, quantum fluctuations affect the transition and possibly lead to the presence of gapless floating phases. The signatures of the soft modes accompanying the transitions appear as a characteristic frequency dependence of the dissipative part of admittance.
167 - I. Serban , F. K. Wilhelm 2009
We provide insight into the qubit measurement process involving a switching type of detector. We study the switching-induced decoherence during escape events. We present a simple method to obtain analytical results for the qubit dephasing and bit-fli p errors, which can be easily adapted to various systems. Within this frame we investigate potential of switching detectors for a fast but only weakly invasive type of detection. We show that the mechanism that leads to strong dephasing, and thus fast measurement, inverts potential bit flip errors due to an intrinsic approximate time reversal symmetry.
We evaluate the rates of energy and phase relaxation of a superconducting qubit caused by stray photons with energy exceeding the threshold for breaking a Cooper pair. All channels of relaxation within this mechanism are associated with the change in the charge parity of the qubit, enabling the separation of the photon-assisted processes from other contributions to the relaxation rates. Among the signatures of the new mechanism is the same order of rates of the transitions in which a qubit looses or gains energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا