ﻻ يوجد ملخص باللغة العربية
Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for protected qubits and quantum simulation.
Circuit quantum electrodynamics, where photons are coherently coupled to artificial atoms built with superconducting circuits, has enabled the investigation and control of macroscopic quantum-mechanical phenomena in superconductors. Recently, hybrid
Atomic systems display a rich variety of quantum dynamics due to the different possible symmetries obeyed by the atoms. These symmetries result in selection rules that have been essential for the quantum control of atomic systems. Superconducting art
We realize a $Lambda$ system in a superconducting circuit, with metastable states exhibiting lifetimes up to 8,ms. We exponentially suppress the tunneling matrix elements involved in spontaneous energy relaxation by creating a heavy fluxonium, realiz
We characterize a fluxonium qubit consisting of a Josephson junction inductively shunted with a NbTiN nanowire superinductance. We explain the measured energy spectrum by means of a multimode theory accounting for the distributed nature of the superi
Circuit quantum electrodynamics systems are typically built from resonators and two-level artificial atoms, but the use of multi-level artificial atoms instead can enable promising applications in quantum technology. Here we present an implementation