ترغب بنشر مسار تعليمي؟ اضغط هنا

A gate-tunable, field-compatible fluxonium

89   0   0.0 ( 0 )
 نشر من قبل Marta Pita-Vidal
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Circuit quantum electrodynamics, where photons are coherently coupled to artificial atoms built with superconducting circuits, has enabled the investigation and control of macroscopic quantum-mechanical phenomena in superconductors. Recently, hybrid circuits incorporating semiconducting nanowires and other electrostatically-gateable elements have provided new insights into mesoscopic superconductivity. Extending the capabilities of hybrid flux-based circuits to work in magnetic fields would be especially useful both as a probe of spin-polarized Andreev bound states and as a possible platform for topological qubits. The fluxonium is particularly suitable as a readout circuit for topological qubits due to its unique persistent-current based eigenstates. In this Letter, we present a magnetic-field compatible hybrid fluxonium with an electrostatically-tuned semiconducting nanowire as its non-linear element. We operate the fluxonium in magnetic fields up to 1T and use it to observe the $varphi_0$-Josephson effect. This combination of gate-tunability and field-compatibility opens avenues for the exploration and control of spin-polarized phenomena using superconducting circuits and enables the use of the fluxonium as a readout device for topological qubits.

قيم البحث

اقرأ أيضاً

70 - A. Kou , W. C. Smith , U. Vool 2016
Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artif icial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for protected qubits and quantum simulation.
We characterize a fluxonium qubit consisting of a Josephson junction inductively shunted with a NbTiN nanowire superinductance. We explain the measured energy spectrum by means of a multimode theory accounting for the distributed nature of the superi nductance and the effect of the circuit nonlinearity to all orders in the Josephson potential. Using multiphoton Raman spectroscopy, we address multiple fluxonium transitions, observe multilevel Autler-Townes splitting and measure an excited state lifetime of $T_mathrm{1}=20$ $mu$s. By measuring $T_1$ at different magnetic flux values, we find a crossover in the lifetime limiting mechanism from capacitive to inductive losses.
We realize a $Lambda$ system in a superconducting circuit, with metastable states exhibiting lifetimes up to 8,ms. We exponentially suppress the tunneling matrix elements involved in spontaneous energy relaxation by creating a heavy fluxonium, realiz ed by adding a capacitive shunt to the original circuit design. The device allows for both cavity-assisted and direct fluorescent readout, as well as state preparation schemes akin to optical pumping. Since direct transitions between the metastable states are strongly suppressed, we utilize Raman transitions for coherent manipulation of the states.
147 - U. Vool , A. Kou , W. C. Smith 2017
Atomic systems display a rich variety of quantum dynamics due to the different possible symmetries obeyed by the atoms. These symmetries result in selection rules that have been essential for the quantum control of atomic systems. Superconducting art ificial atoms are mainly governed by parity symmetry. Its corresponding selection rule limits the types of quantum systems that can be built using electromagnetic circuits at their optimal coherence operation points (sweet spots). Here, we use third-order nonlinear coupling between the artificial atom and its readout resonator to drive transitions forbidden by the parity selection rule for linear coupling to microwave radiation. A Lambda-type system emerges from these newly accessible transitions, implemented here in the fluxonium artificial atom coupled to its antenna resonator. We demonstrate coherent manipulation of the fluxonium artificial atom at its sweet spot by stimulated Raman transitions. This type of transition enables the creation of new quantum operations, such as the control and readout of physically protected artificial atoms.
Non-volatile memory devices have been limited to flash architectures that are complex devices. Here, we present a unique photomemory effect in MoS$_2$ transistors. The photomemory is based on a photodoping effect - a controlled way of manipulating th e density of free charges in monolayer MoS$_2$ using a combination of laser exposure and gate voltage application. The photodoping promotes changes on the conductance of MoS$_2$ leading to photomemory states with high memory on/off ratio. Such memory states are non-volatile with an expectation of retaining up to 50 % of the information for tens of years. Furthermore, we show that the photodoping is gate-tunable, enabling control of the recorded memory states. Finally, we propose a model to explain the photodoping, and we provide experimental evidence supporting such a phenomenon. In summary, our work includes the MoS$_2$ phototransistors in the non-volatile memory devices and expands the possibilities of memory application beyond conventional memory architectures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا