ﻻ يوجد ملخص باللغة العربية
The use of Silicon Photo-Multipliers (SiPMs) has become popular in the design of High Energy Physics experimental apparatus with a growing interest for their application in detector area where a significant amount of non-ionising dose is delivered. For these devices, the main effect caused by the neutron flux is a linear increase of the leakage current. In this paper, we present a technique that provides a partial recovery of the neutron damage on SiPMs by means of an Electrical Induced Annealing. Tests were performed on a sample of three SiPM arrays (2 $times$ 3) of 6 mm$^2$ cells with 50 {mu}m pixel sizes: two from Hamamatsu and one from SensL. These SiPMs were irradiated up to an integrated neutron flux up to 8 $times$ 10$^{11}$ n$_{1MeV-eq}$/cm$^2$. Our techniques allowed to reduced the leakage current of a factor ranging between 15-20 depending on the overbias used and the SiPM vendor.
Silicon Photomultipliers (SiPMs) are quickly replacing traditional photomultiplier tubes (PMTs) as the readout of choice for gamma-ray scintillation detectors in space. While they offer substantial size, weight and power saving, they have shown to be
The motivation for investigating the use of GaAs as a material for detecting particles in experiments for High Energy Physics (HEP) arose from its perceived resistance to radiation damage. This is a vital requirement for detector materials that are t
Cerium-doped Cs$_2$LiYCl$_6$ (CLYC) and Cs$_2$LiLaBr$_x$Cl$_{6-x}$ (CLLBC) are scintillators in the elpasolite family that are attractive options for resource-constrained applications due to their ability to detect both gamma rays and neutrons within
Prototype SiPMs with 4384 pixels of dimensions $15 times 15~mu $m$^2$ produced by KETEK have been irradiated with reactor neutrons to eight fluences between $10^9$ and $5times 10^{14}$ cm$^{-2}$. For temperatures between $-30~^circ $C and $+30~^circ
This paper presents the results of neutron flux measurements at two irradiation facilities of the TRIGA Mark II reactor at ENEA Casaccia Research Center, Italy. The goal of these measurements is to provide a complete characterization of neutron irrad