ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation damage assessment of SensL SiPMs

74   0   0.0 ( 0 )
 نشر من قبل Lee Mitchell
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicon Photomultipliers (SiPMs) are quickly replacing traditional photomultiplier tubes (PMTs) as the readout of choice for gamma-ray scintillation detectors in space. While they offer substantial size, weight and power saving, they have shown to be susceptible to radiation damage. SensL SiPMs with different cell sizes were irradiated with 64 MeV protons and 8 MeV electrons. In general, results show larger cell sizes are more susceptible to radiation damage with the largest 50 um SiPMs showing the greatest increase in current as a function of dose. Current increases were observed for doses as low at ~2 rad(Si) for protons and ~20 rad(Si) for electrons. The U.S. Naval Research Laboratorys (NRL) Strontium Iodide Radiation Instrument (SIRI-1) experienced a 528 uA increase in the bias current of the on-board 2x2 SensL J-series 60035 SiPM over its one-year mission in sun-synchronous orbit. The work here focuses on the increase in bulk current observed with increasing radiation damage and was performed to better quantify this effect as a function of dose for future mission. These include the future NRL mission SIRI-2, the follow on to SIRI-1, Glowbug and the GAGG Radiation Instrument (GARI).

قيم البحث

اقرأ أيضاً

The use of Silicon Photo-Multipliers (SiPMs) has become popular in the design of High Energy Physics experimental apparatus with a growing interest for their application in detector area where a significant amount of non-ionising dose is delivered. F or these devices, the main effect caused by the neutron flux is a linear increase of the leakage current. In this paper, we present a technique that provides a partial recovery of the neutron damage on SiPMs by means of an Electrical Induced Annealing. Tests were performed on a sample of three SiPM arrays (2 $times$ 3) of 6 mm$^2$ cells with 50 {mu}m pixel sizes: two from Hamamatsu and one from SensL. These SiPMs were irradiated up to an integrated neutron flux up to 8 $times$ 10$^{11}$ n$_{1MeV-eq}$/cm$^2$. Our techniques allowed to reduced the leakage current of a factor ranging between 15-20 depending on the overbias used and the SiPM vendor.
The X-ray SOI pixel sensor onboard the FORCE satellite will be placed in the low earth orbit and will consequently suffer from the radiation effects mainly caused by geomagnetically trapped cosmic-ray protons. Based on previous studies on the effects of radiation on SOI pixel sensors, the positive charges trapped in the oxide layer significantly affect the performance of the sensor. To improve the radiation hardness of the SOI pixel sensors, we introduced a double-SOI (D-SOI) structure containing an additional middle Si layer in the oxide layer. The negative potential applied on the middle Si layer compensates for the radiation effects, due to the trapped positive charges. Although the radiation hardness of the D-SOI pixel sensors for applications in high-energy accelerators has been evaluated, radiation effects for astronomical application in the D-SOI sensors has not been evaluated thus far. To evaluate the radiation effects of the D-SOI sensor, we perform an irradiation experiment using a 6-MeV proton beam with a total dose of ~ 5 krad, corresponding to a few tens of years of in-orbit operation. This experiment indicates an improvement in the radiation hardness of the X- ray D-SOI devices. On using an irradiation of 5 krad on the D-SOI device, the energy resolution in the full-width half maximum for the 5.9-keV X-ray increases by 7 $pm$ 2%, and the chip output gain decreases by 0.35 $pm$ 0.09%. The physical mechanism of the gain degradation is also investigated; it is found that the gain degradation is caused by an increase in the parasitic capacitance due to the enlarged buried n-well.
Prototype SiPMs with 4384 pixels of dimensions $15 times 15~mu $m$^2$ produced by KETEK have been irradiated with reactor neutrons to eight fluences between $10^9$ and $5times 10^{14}$ cm$^{-2}$. For temperatures between $-30~^circ $C and $+30~^circ $C capacitance-voltage, admittance-frequency, current-forward voltage, current-reverse voltage and charge-voltage measurements with and without illumination by a sub-nanosecond laser have been performed. The data have been analysed using different methods in order to extract the dependence on neutron fluence and temperature of the electrical parameters, the breakdown oltage, the activation energy for the current generation, the dark-count rate and the response to light pulses. The results from the different analysis methods are compared.
The characterisation of radiation-damaged SiPMs is a major challenge, when the average time between dark counts approaches, or even exceeds, the signal decay time. In this note a collection of formulae is presented, which have been developed and used for the analysis of current measurements for SiPMs in the dark and illuminated by an LED, before and after hadron irradiation. It is shown, how parameters like the breakdown voltage, the quenching resistance, the dark-count rate, the reduction of the photo-detection efficiency due to dark counts and the Geiger discharge probability can be estimated from current-voltage measurements. The only additional SiPM parameters needed are the pixel capacitance, the number of pixels and the correlated noise. Central to the method is the concept of the pixel occupancy, the probability of a Geiger discharge in a single pixel during a given time interval, for which the decay time of the SiPM signal has been assumed. As an illustration the formulae are used to characterise a KETEK SiPM before and after irradiation by a fluence of 5E13 cm$^{-2}$ of reactor neutrons for temperatures of -30{deg}C and +20{deg}C, where dark-count rates exceeding 1E11 Hz are observed.
Cs$_2$LiYCl$_6$:Ce$^{3+}$ (CLYC) is a new scintillator that is an attractive option for applications requiring the ability to detect both gamma rays and neutrons within a single volume. It is therefore of interest in applications that require low siz e, weight, or power, such as space applications. The radiation environment in space can over time damage the crystal structure of CLYC, leading to reduced performance. We have exposed 2 CLYC samples to 800 MeV protons at the Los Alamos Neutron Science Center, one to approximately 10 kRad and one to approximately 100 kRad. We measured the pulse shapes and amplitudes, energy resolution, and figure of merit for pulse-shape discrimination before and after irradiation. We have also measured the activation products and monitored for room-temperature annealing of the irradiated samples. The results of these measurements and the impact of radiation damage on CLYC performance is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا