ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis methods for highly radiation-damaged SiPMs

67   0   0.0 ( 0 )
 نشر من قبل Robert Klanner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Prototype SiPMs with 4384 pixels of dimensions $15 times 15~mu $m$^2$ produced by KETEK have been irradiated with reactor neutrons to eight fluences between $10^9$ and $5times 10^{14}$ cm$^{-2}$. For temperatures between $-30~^circ $C and $+30~^circ $C capacitance-voltage, admittance-frequency, current-forward voltage, current-reverse voltage and charge-voltage measurements with and without illumination by a sub-nanosecond laser have been performed. The data have been analysed using different methods in order to extract the dependence on neutron fluence and temperature of the electrical parameters, the breakdown oltage, the activation energy for the current generation, the dark-count rate and the response to light pulses. The results from the different analysis methods are compared.

قيم البحث

اقرأ أيضاً

The characterisation of radiation-damaged SiPMs is a major challenge, when the average time between dark counts approaches, or even exceeds, the signal decay time. In this note a collection of formulae is presented, which have been developed and used for the analysis of current measurements for SiPMs in the dark and illuminated by an LED, before and after hadron irradiation. It is shown, how parameters like the breakdown voltage, the quenching resistance, the dark-count rate, the reduction of the photo-detection efficiency due to dark counts and the Geiger discharge probability can be estimated from current-voltage measurements. The only additional SiPM parameters needed are the pixel capacitance, the number of pixels and the correlated noise. Central to the method is the concept of the pixel occupancy, the probability of a Geiger discharge in a single pixel during a given time interval, for which the decay time of the SiPM signal has been assumed. As an illustration the formulae are used to characterise a KETEK SiPM before and after irradiation by a fluence of 5E13 cm$^{-2}$ of reactor neutrons for temperatures of -30{deg}C and +20{deg}C, where dark-count rates exceeding 1E11 Hz are observed.
This paper discusses the effects of radiation damage to SiPMs on the performances of plastic scintillator counters with series-connected SiPM readout, focusing on timing measurements. The performances of a counter composed of a $120 times 40 times5~m athrm{mm}^3$ scintillator tile read out by two sets of six SiPMs from AdvanSiD connected in series attached on the short sides are presented, for different combinations of SiPMs at various levels of irradiation. Firstly, six SiPMs were equally irradiated with electrons from $^{90}$Sr sources up to a fluence of $Phi_mathrm{e^-}approx 3 times 10^{12}~mathrm{cm}^{-2}$. The timing resolution of the counter gradually deteriorated by the increase in dark current. The dark current and the deterioration were reduced when the counter was cooled from 30$^circ$C to 10$^circ$C. Secondly, 33 SiPMs were irradiated with reactor neutrons. The characteristics of counters read out by series-connected SiPMs with non-uniform damage levels, were investigated. The signal pulse height, the time response, and the timing resolution depend on the hit position in the counter, when SiPMs irradiation is not uniform.
Silicon Photomultipliers (SiPMs) are quickly replacing traditional photomultiplier tubes (PMTs) as the readout of choice for gamma-ray scintillation detectors in space. While they offer substantial size, weight and power saving, they have shown to be susceptible to radiation damage. SensL SiPMs with different cell sizes were irradiated with 64 MeV protons and 8 MeV electrons. In general, results show larger cell sizes are more susceptible to radiation damage with the largest 50 um SiPMs showing the greatest increase in current as a function of dose. Current increases were observed for doses as low at ~2 rad(Si) for protons and ~20 rad(Si) for electrons. The U.S. Naval Research Laboratorys (NRL) Strontium Iodide Radiation Instrument (SIRI-1) experienced a 528 uA increase in the bias current of the on-board 2x2 SensL J-series 60035 SiPM over its one-year mission in sun-synchronous orbit. The work here focuses on the increase in bulk current observed with increasing radiation damage and was performed to better quantify this effect as a function of dose for future mission. These include the future NRL mission SIRI-2, the follow on to SIRI-1, Glowbug and the GAGG Radiation Instrument (GARI).
The use of Silicon Photo-Multipliers (SiPMs) has become popular in the design of High Energy Physics experimental apparatus with a growing interest for their application in detector area where a significant amount of non-ionising dose is delivered. F or these devices, the main effect caused by the neutron flux is a linear increase of the leakage current. In this paper, we present a technique that provides a partial recovery of the neutron damage on SiPMs by means of an Electrical Induced Annealing. Tests were performed on a sample of three SiPM arrays (2 $times$ 3) of 6 mm$^2$ cells with 50 {mu}m pixel sizes: two from Hamamatsu and one from SensL. These SiPMs were irradiated up to an integrated neutron flux up to 8 $times$ 10$^{11}$ n$_{1MeV-eq}$/cm$^2$. Our techniques allowed to reduced the leakage current of a factor ranging between 15-20 depending on the overbias used and the SiPM vendor.
We have developed a function which describes SiPM response in both small signal and highly saturated regimes. The function includes the reactivation of SiPM pixels during a single input light pulse, and results in an approximately linear increase of SiPM response in the highly saturated regime, as observed in real SiPMs. This article shows that the function can accurately describe the measured response of real SiPM devices over a wide range of signal intensities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا