ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Proton-Induced Radiation Damage on CLYC and CLLBC Performance

66   0   0.0 ( 0 )
 نشر من قبل Katherine Mesick
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cerium-doped Cs$_2$LiYCl$_6$ (CLYC) and Cs$_2$LiLaBr$_x$Cl$_{6-x}$ (CLLBC) are scintillators in the elpasolite family that are attractive options for resource-constrained applications due to their ability to detect both gamma rays and neutrons within a single volume. Space-based detectors are one such application, however, the radiation environment in space can over time damage the crystal structure of the elpasolites, leading to degraded performance. We have exposed 4 samples each of CLYC and CLLBC to 800 MeV protons at the Los Alamos Neutron Science Center. The samples were irradiated with a total number of protons of 1.3$times$10$^{9}$, 1.3$times$10$^{10}$, 5.2$times$10$^{10}$, and 1.3$times$10$^{11}$, corresponding to estimated doses of 0.14, 1.46, 5.82, and 14.6 kRad, respectively on the CLYC samples and 0.14, 1.38, 5.52, and 13.8 kRad, respectively on the CLLBC samples. We report the impact these radiation doses have on the light output, activation, gamma-ray energy resolution, pulse shapes, and pulse-shape discrimination figure of merit for CLYC and CLLBC.



قيم البحث

اقرأ أيضاً

Cs$_2$LiYCl$_6$:Ce$^{3+}$ (CLYC) is a new scintillator that is an attractive option for applications requiring the ability to detect both gamma rays and neutrons within a single volume. It is therefore of interest in applications that require low siz e, weight, or power, such as space applications. The radiation environment in space can over time damage the crystal structure of CLYC, leading to reduced performance. We have exposed 2 CLYC samples to 800 MeV protons at the Los Alamos Neutron Science Center, one to approximately 10 kRad and one to approximately 100 kRad. We measured the pulse shapes and amplitudes, energy resolution, and figure of merit for pulse-shape discrimination before and after irradiation. We have also measured the activation products and monitored for room-temperature annealing of the irradiated samples. The results of these measurements and the impact of radiation damage on CLYC performance is presented.
622 - S. Fiore 2015
Radiation damage effects represent one of the limits for technologies to be used in harsh radiation environments as space, radiotherapy treatment, high-energy phisics colliders. Different technologies have known tolerances to different radiation fiel ds and should be taken into account to avoid unexpected failures which may lead to unrecoverable damages to scientific missions or patient health.
The use of Silicon Photo-Multipliers (SiPMs) has become popular in the design of High Energy Physics experimental apparatus with a growing interest for their application in detector area where a significant amount of non-ionising dose is delivered. F or these devices, the main effect caused by the neutron flux is a linear increase of the leakage current. In this paper, we present a technique that provides a partial recovery of the neutron damage on SiPMs by means of an Electrical Induced Annealing. Tests were performed on a sample of three SiPM arrays (2 $times$ 3) of 6 mm$^2$ cells with 50 {mu}m pixel sizes: two from Hamamatsu and one from SensL. These SiPMs were irradiated up to an integrated neutron flux up to 8 $times$ 10$^{11}$ n$_{1MeV-eq}$/cm$^2$. Our techniques allowed to reduced the leakage current of a factor ranging between 15-20 depending on the overbias used and the SiPM vendor.
338 - R.L. Bates , C. DaVia , V. OShea 1997
The motivation for investigating the use of GaAs as a material for detecting particles in experiments for High Energy Physics (HEP) arose from its perceived resistance to radiation damage. This is a vital requirement for detector materials that are t o be used in experiments at future accelerators where the radiation environments would exclude all but the most radiation resistant of detector types.
Silicon photomultipliers (SiPMs) have become popular light conversion devices in recent years due to their low bias voltage and sensitivity to wavelengths emitted from common scintillating materials. These properties make them particularly attractive for resource-constrained missions such as space-based detector applications. However the space radiation environment is known to be particularly harsh on semiconductor devices, where high particle fluences can degrade performance over time. The radiation hardness of a particular SiPM, manufactured by ON Semiconductor (formally SensL), has yet to be studied with high energy protons, which are native to the space radiation environment. To study these effects we have irradiated groups of two SiPMs to four different fluences of 800 MeV protons delivered by the accelerator at the Los Alamos Neutron Science Center. Fluences of $1.68times10^{9}$, $1.73times10^{10}$, $6.91times10^{10}$, and $1.73times10^{11}$ protons cm$^{-2}$, and their corresponding estimated doses of $0.15$, $1.55$, $6.19$, and $15.5$ kRad, were chosen based on estimates of the potential exposure a SiPM might receive during an interplanetary space mission lasting 10 years. We report the effects these doses have on dark current and the self-annealing time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا