ﻻ يوجد ملخص باللغة العربية
Using element-specific X-ray magnetic circular dichroism (XMCD) technique we have studied different magnetic sublattices in a multiferroic Ho$_{0.5}$Nd$_{0.5}$Fe$_{3}$(BO$_{3}$)$_{4}$ single crystal. The XMCD measurements at the emph{L}$_{2,3}$-edges of Ho and Nd, and at the Fe emph{K}-edge have been performed at emph{T}=2~K under a magnetic field up to 17~T applied along the trigonal emph{c}-axis as well as in the basal emph{ab}-plane. All three magnetic sublattices are shown to undergo a spin-reorientation transition under magnetic field applied along the emph{c}-axis. On the contrary, when magnetic field is applied in the emph{ab}-plane only the holmium atoms exhibit a magnetization jump. Thus, the element-specific magnetization curves revealed the Ho sublattice to be much stronger coupled to the Fe one than the Nd sublattice. The results demonstrate that the Ho$^{3+}$ subsystem plays even more dominant role in magnetic behavior of Ho$_{0.5}$Nd$_{0.5}$Fe$_{3}$(BO$_{3}$)$_{4}$ crystal than in pure HoFe$_{3}$(BO$_{3}$)$_{4}$ crystal.
The electric-field control of $d$-electron magnetism in multiferroic transition metal oxides is attracting widespread interest for the underlying fundamental physics and for next generation spintronic devices. Here, we report an extensive study of th
We performed inelastic neutron scattering measurements on single crystals of NdFe$_{3}$($^{11}$BO$_{3}$)$_{4}$ to explore the magnetic excitations, to establish the underlying Hamiltonian, and to reveal the detailed nature of hybridization between th
Fe-doped III-V ferromagnetic semiconductors (FMSs) such as (In,Fe)As, (Ga,Fe)Sb, (In,Fe)Sb, and (Al,Fe)Sb are promising materials for spintronic device applications because of the availability of both n- and p-type materials and the high Curie temper
We have studied a non volatile memory effect in the mixed valent compound La$_{0.5}$Ca$_{0.5}$MnO$_{3}$ induced by magnetic field (H). In a previous work [R.S. Freitas et al., Phys. Rev. B 65 (2002) 104403], it has been shown that the response of thi
X-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra at the L$_{2,3}$ edges of Mn in (Ge,Mn) compounds have been measured and are compared to the results of first principles calculation. Early textit{ab initio} studies show tha