ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetoresistive memory in phase separated La$_{0.5}$Ca$_{0.5}$MnO$_{3}$

112   0   0.0 ( 0 )
 نشر من قبل Joaquin Sacanell
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied a non volatile memory effect in the mixed valent compound La$_{0.5}$Ca$_{0.5}$MnO$_{3}$ induced by magnetic field (H). In a previous work [R.S. Freitas et al., Phys. Rev. B 65 (2002) 104403], it has been shown that the response of this system upon application of H strongly depends on the temperature range, related to three well differentiated regimes of phase separation occurring below 220 K. In this work we compare memory capabilities of the compound, determined following two different experimental procedures for applying H, namely zero field cooling and field cooling the sample. These results are analyzed and discussed within the scenario of phase separation.



قيم البحث

اقرأ أيضاً

We studied the charge-orbital ordering in the superlattice of charge-ordered insulating Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ and ferromagnetic metallic La$_{0.5}$Sr$_{0.5}$MnO$_3$ by resonant soft x-ray diffraction. A temperature-dependent incommensurability is found in the orbital order. In addition, a large hysteresis is observed that is caused by phase competition between insulating charge ordered and metallic ferromagnetic states. No magnetic phase transitions are observed in contrast to bulk, confirming the unique character of the superlattice. The deviation from the commensurate orbital order can be directly related to the decrease of ordered-layer thickness that leads to a decoupling of the orbital-ordered planes along the c axis.
126 - S. Cox , E. Rosten , J. C. Chapman 2005
We have recently argued that manganites do not possess stripes of charge order, implying that the electron-lattice coupling is weak [Phys Rev Lett textbf{94} (2005) 097202]. Here we independently argue the same conclusion based on transmission electr on microscopy measurements of a nanopatterned epitaxial film of La$_{0.5}$Ca$_{0.5}$MnO$_3$. In strain relaxed regions, the superlattice period is modified by 2-3% with respect to the parent lattice, suggesting that the two are not strongly tied.
We report an experimental study of the time dependence of the resistivity and magnetization of charge-ordered La$_{0.5}$Ca$_{0.5}$MnO$_{3}$ under different thermal and magnetic field conditions. A relaxation with a stretched exponential time dependen ce has been observed at temperatures below the charge ordering temperature. A model using a hierarchical distribution of relaxation times can explain the data.
97 - P. Levy , F. Parisi , J. Sacanell 2002
We have studied magnetic and transport properties on different manganese oxide based compounds exhibiting phase separation: polycrystalline La5/8-yPryCa3/8MnO3 (y=0.3) and La1/2Ca1/2Mn1-zFezO3 (z = 0.05), and single crystals of La5/8-yPryCa3/8MnO3 (y =0.35). Time dependent effects indicate that the fractions of the coexisting phases are dynamically changing in a definite temperature range. We found that in this range the ferromagnetic fraction f can be easily tuned by application of low magnetic fields (< 1 T). The effect is persistent after the field is turned off, thus the field remains imprinted in the actual value of f and can be recovered through transport measurements. This effect is due both to the existence of a true phase separated equilibrium state with definite equilibrium fraction f0, and to the slow growth dynamics. The fact that the same global features were found on different compounds and in polycrystalline and single crystalline samples, suggests that the effect is a general feature of some phase separated media.
228 - Pallab Bag , P. R. Baral , 2018
We report the structural, static, and dynamic properties of Cr$_{0.5}$Fe$_{0.5}$Ga by means of powder x-ray diffraction, magnetization, heat capacity, magnetic relaxation, and magnetic memory effect measurements. DC magnetization and AC susceptibilit y studies reveal a spin-glass transition at around $T_{rm f} simeq 22$~K. An intermediate value of the relative shift in freezing temperature $delta T_{rm f} simeq 0.017$, obtained from the AC susceptibility data reflects the formation of cluster spin-glass states. The frequency dependence of $T_{rm f}$ is also analyzed within the framework of dynamic scaling laws. The analysis using power law yields a time constant for a single spin flip $tau* simeq 1.1times10^{-10}$~s and critical exponent $z u^{prime}=4.2pm0.2$. On the other hand, the Vogel-Fulcher (VF) law yields the time constant for a single spin flip $tau_0 simeq 6.6times10^{-9}$~s, VF temperature $T_{rm 0}=21.1pm0.1$~K, and an activation energy $E_{rm a}/k_{rm B} simeq 16$~K. The value of $tau*$ and $tau_0$ along with a non-zero value of $T_{rm 0}$ provide further evidence for the cluster spin-glass behaviour. The magnetic field dependent $T_{rm f}$ follows the de Almeida-Thouless line with a non-mean-field type instability, reflecting either a different universality class or strong anisotropy in the spin system. A detailed non-equilibrium dynamics study via relaxation and memory effect experiments demonstrates striking memory effects. All the above observations render a cluster spin-glass behaviour which is triggered by magnetic frustration due to competing antiferromagnetic and ferromagnetic interactions and magnetic site disorder. Moreover, the asymmetric response of magnetic relaxation with respect to the change in temperature, below $T_{rm f}$ can be explained by the hierarchical model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا