ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of the Magnetic Model in Multiferroic NdFe$_{3}$(BO$_{3}$)$_{4}$ by Inelastic Neutron Scattering

464   0   0.0 ( 0 )
 نشر من قبل Takatsugu Masuda
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed inelastic neutron scattering measurements on single crystals of NdFe$_{3}$($^{11}$BO$_{3}$)$_{4}$ to explore the magnetic excitations, to establish the underlying Hamiltonian, and to reveal the detailed nature of hybridization between the 4$f$ and 3$d$ magnetism. The observed spectra exhibiting a couple of key features, i.e., anti-crossing of Nd- and Fe-excitations and anisotropy gap at the antiferromagnetic zone center, are explained by the magnetic model including spin interaction in the framework of weakly-coupled Fe$^{3+}$ chains, interaction between the Fe$^{3+}$ and Nd$^{3+}$ moments, and single-ion anisotropy derived from Nd$^{3+}$ crystal field. The combination of the measurements and calculations reveals that the hybridization between 4$f$ and 3$d$ magnetism propagates the local magnetic anisotropy of the Nd$^{3+}$ ion to the Fe$^{3+}$ network, resulting in the bulk structure of multiferroics.



قيم البحث

اقرأ أيضاً

We present data on the magnetic and magneto-elastic coupling in the hexagonal multiferroic manganite LuMnO3 from inelastic neutron scattering, magnetization and thermal expansion measurements. We measured the magnon dispersion along the main symmetry directions and used this data to determine the principal exchange parameters from a spin-wave model. An analysis of the magnetic anisotropy in terms of the crystal field acting on the Mn is presented. We compare the results for LuMnO3 with data on other hexagonal RMnO3 compounds.
We have investigated the phonon and the magnetic excitations in LaCoO3 by inelastic neutron scattering measurements. The acoustic phonon dispersions show some characteristic features of the folded Brillouin zone (BZ) for the rhombohedrally distorted perovskite structure containing two chemical formula units of LaCoO3 in the unit cell. We observed two transverse optical (TO) phonon branches along (delta, delta, delta), consistent with previously reported Raman active Eg modes which show remarkable softening associated with the spin-state transition [Ishikawa et al., (Phys. Rev. Lett. 93 (2004) 136401.)]. We found that the softening takes place in the TO mode over the whole BZ. In contrast, the acoustic phonons show no anomalous softening associated with the spin-state transition. The low-energy paramagnetic scattering at 8 K is weak, increasing towards a maximum at E > 15 meV, consistent with excitation of the nonmagnetic low-spin to magnetic intermediate-spin state of Co 3+ ions.
217 - Ankita Singh 2016
The structural, magnetic, and electronic properties of NdFe$_{0.5}$Mn$_{0.5}$O$_3$ have been studied in detail using bulk magnetization, neutron/x-ray diffraction and first principles density functional theory calculations. The material crystallizes in the orthorhombic $Pbnm$ structure, where both Mn and Fe occupy the same crystallographic site ($4b$). Mn/Fe sublattice of the compound orders in to a G-type antiferromagnetic phase close to 250,K where the magnetic structure belongs to ${Gamma}_{1}$ irreducible representation with spins aligned along the crystallographic $b$ direction. This is unconventional in the sense that most of the orthoferrites and orthochromites order in the ${Gamma}_{4}$ representation below the N{e}el temperature.This magnetic structure then undergoes a complete spin reorientation transition with temperature in the range 75,K$gtrsim$ T $gtrsim$ 25,K where the magnetic structure exists as a sum of two irreducible representations (${Gamma}_{1}$+${Gamma}_{2}$) as seen from neutron diffraction measurements. At 6,K, the magnetic structure belongs entirely to ${Gamma}_{2}$ representation with spins aligned antiferromagnetically along the crystallographic $c$ direction having a small ferromagnetic component ($F_x$). The unusual spin reorientation and correlation between magnetic ground state and electronic structure have been investigated using first principles calculations within GGA+U and GGA+U+SO formalisms.
Below about 150 K, the spin arrangement in the chain arrays of Sr14Cu24O41 is shown to develop in two dimensions (2D). Both the correlations and the dispersion of the observed elementary excitations agree well with a model of interacting dimers. Alon g the chains, the intra- and inter-dimer distances are equal to 2 and about 3 times the distance (c) between neighboring Cu ions. While the intra-dimer coupling is J about 10 meV, the inter-dimer couplings along and between the chains are of comparable strenght, J// about -1.1 meV and Jperp about 1.7 meV, respectively. This remarkable 2D arrangement satisfies the formal Cu valence of the undoped compound. Our data suggest also that it is associated with a relative sliding of one chain with respect to the next one, which, as T decreases, develops in the chain direction. A qualitative analysis shows that nearest inter-dimer spin correlations are ferromagnetic, which, in such a 2D structure, could well result from frustration effects.
Using element-specific X-ray magnetic circular dichroism (XMCD) technique we have studied different magnetic sublattices in a multiferroic Ho$_{0.5}$Nd$_{0.5}$Fe$_{3}$(BO$_{3}$)$_{4}$ single crystal. The XMCD measurements at the emph{L}$_{2,3}$-edges of Ho and Nd, and at the Fe emph{K}-edge have been performed at emph{T}=2~K under a magnetic field up to 17~T applied along the trigonal emph{c}-axis as well as in the basal emph{ab}-plane. All three magnetic sublattices are shown to undergo a spin-reorientation transition under magnetic field applied along the emph{c}-axis. On the contrary, when magnetic field is applied in the emph{ab}-plane only the holmium atoms exhibit a magnetization jump. Thus, the element-specific magnetization curves revealed the Ho sublattice to be much stronger coupled to the Fe one than the Nd sublattice. The results demonstrate that the Ho$^{3+}$ subsystem plays even more dominant role in magnetic behavior of Ho$_{0.5}$Nd$_{0.5}$Fe$_{3}$(BO$_{3}$)$_{4}$ crystal than in pure HoFe$_{3}$(BO$_{3}$)$_{4}$ crystal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا