ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray magnetic circular dichroism in (Ge,Mn) compounds: experiments and modeling

214   0   0.0 ( 0 )
 نشر من قبل Samuel Tardif
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra at the L$_{2,3}$ edges of Mn in (Ge,Mn) compounds have been measured and are compared to the results of first principles calculation. Early textit{ab initio} studies show that the Density Functional Theory (DFT) can very well describe the valence band electronic properties but fails to reproduce a characteristic change of sign in the L$_{3}$ XMCD spectrum of Mn in Ge$_3$Mn$_5$, which is observed in experiments. In this work we demonstrate that this disagreement is partially related to an underestimation of the exchange splitting of Mn 2$p$ core states within the local density approximation. It is shown that the change in sign experimentally observed is reproduced if the exchange splitting is accurately calculated within the Hartree-Fock approximation, while the final states can be still described by the DFT. This approach is further used to calculate the XMCD in different (Ge,Mn) compounds. It demonstrates that the agreement between experimental and theoretical spectra can be improved by combining state of the art calculations for the core and valence states respectively.



قيم البحث

اقرأ أيضاً

140 - F. Wilhelm , R. Eloirdi , J. Rusz 2013
The actinide cubic Laves compounds NpAl2, NpOs2, NpFe2, and PuFe2 have been examined by X-ray magnetic circular dichroism (XMCD) at the actinide M4,5 absorption edges and Os L2,3 absorption edges. The XMCD experiments performed at the M4,5 absorption edges of Np and Pu allow us to determine the spectroscopic branching ratio, which gives information on the coupling scheme in these materials. In all materials the intermediate coupling scheme is found appropriate. Comparison with the SQUID data for NpOs2 and PuFe2 allows a determination of the individual orbital and spin magnetic moments and the magnetic dipole contribution mmd. The resulting orbital and spin magnetic moments are in good agreement with earlier values determined by neutron diffraction, and the values of mmd are non-negligible, and close to those predicted for intermediate coupling. There is a comparatively large induced moment on the Os atom in NpOs2 such that the Os contribution to the total moment per formula unit is ~30% of the total. The spin and orbital moments at the Os site are parallel, in contrast to the anti-parallel configuration of Os impurities in 3d ferromagnetic transition metals. Calculations using the LDA+U technique are reported. The ab initio computed XMCD spectra show good agreement with experimental spectra for small values (0-1eV) of the Hubbard U parameter, which underpins that 5f electrons in these compounds are relatively delocalized.
We have investigated the electronic structure of ZnO:Mn and ZnO:Mn,N thin films using x-ray magnetic circular dichroism (XMCD) and resonance-photoemission spectroscopy. From the Mn 2$p$$rightarrow3d$ XMCD results, it is shown that, while XMCD signals only due to paramagnetic Mn$^{2+}$ ions were observed in ZnO:Mn, nonmagnetic, paramagnetic and ferromagnetic Mn$^{2+}$ ions coexist in ZnO:Mn,N. XMCD signals of ZnO:Mn,N revealed that the localized Mn$^{2+}$ ground state and Mn$^{2+}$ state hybridized with ligand hole coexisted, implying $p$-$d$ exchange coupling. In the valence-band spectra, spectral weight near the Fermi level was suppressed, suggesting that interaction between magnetic moments in ZnO:Mn,N has localized nature.
The magnetic properties of as-grown Ga$_{1-x}$Mn$_{x}$As have been investigated by the systematic measurements of temperature and magnetic field dependent soft x-ray magnetic circular dichroism (XMCD). The {it intrinsic} XMCD intensity at high temper atures obeys the Curie-Weiss law, but residual spin magnetic moment appears already around 100 K, significantly above Curie temperature ($T_C$), suggesting that short-range ferromagnetic correlations are developed above $T_C$. The present results also suggest that antiferromagnetic interaction between the substitutional and interstitial Mn (Mn$_{int}$) ions exists and that the amount of the Mn$_{int}$ affects $T_C$.
We demonstrate sensitivity of the Mn 3d valence states to strain in the ferromagnetic semiconductors (Ga,Mn)As and (Al,Ga,Mn)As, using x-ray magnetic circular dichroism (XMCD). The spectral shape of the Mn $L_{2,3}$ XMCD is dependent on the orientati on of the magnetization, and features with cubic and uniaxial dependence are distinguished. Reversing the strain reverses the sign of the uniaxial anisotropy of the Mn $L_3$ pre-peak which is ascribed to transitions from the Mn 2p core level to p-d hybridized valence band hole states. With increasing carrier localization, the $L_3$ pre-peak intensity increases, indicating an increasing 3d character of the hybridized holes.
We study the spin-dependent electronic structure of UTe and UT_{2}Si_{2} (T=Cu and Mn) compounds with a combination of x-ray magnetic circular dichroism measurements and first principle calculations. By exploiting the presence of sizable quadrupolar and dipolar contributions to the U L_{2,3}-edge x-ray absorption cross section we are able to provide unique information on the extent of hybridization between 5f and 6d/3d electronic states, a key parameter regulating the physical properties of all actinide materials. Since this information is hardly accessible to other probes, the new methodology opens up new venues for investigating this important class of materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا