ﻻ يوجد ملخص باللغة العربية
Based on large-scale quantum Monte Carlo simulations, we examine the correlations along the edges of two-dimensional semi-infinite quantum critical Heisenberg spin-$1/2$ systems. In particular, we consider coupled quantum spin-dimer systems at their bulk quantum critical points, including the columnar-dimer model and the plaquette-square lattice. The alignment of the edge spins strongly affects these correlations and the corresponding scaling exponents, with remarkably similar values obtained for various quantum spin-dimer systems. We furthermore observe subtle effects on the scaling behavior from perturbing the edge spins that exhibit the genuine quantum nature of these edge states. Our observations furthermore challenge recent attempts that relate the edge spin criticality to the presence of symmetry-protected topological phases in such quantum spin systems.
We overview physical effects of exchange frustration and quantum spin fluctuations in (quasi-) two dimensional (2D) quantum magnets ($S=1/2$) with square, rectangular and triangular structure. Our discussion is based on the $J_1$-$J_2$ type frustrate
We study the critical breakdown of two-dimensional quantum magnets in the presence of algebraically decaying long-range interactions by investigating the transverse-field Ising model on the square and triangular lattice. This is achieved technically
Quantum magnets provide the simplest example of strongly interacting quantum matter, yet they continue to resist a comprehensive understanding above one spatial dimension (1D). In 1D, a key ingredient to progress is Luttinger liquid theory which prov
We study effects of disorder (randomness) in a 2D square-lattice $S=1/2$ quantum spin system, the $J$-$Q$ model with a 6-spin interaction $Q$ supplementing the Heisenberg exchange $J$. In the absence of disorder the system hosts antiferromagnetic (AF
An important problem in contemporary physics concerns quantum-critical fluctuations in metals. A scaling function for the momentum, frequency, temperature and magnetic field dependence of the correlation function near a 2D-ferromagnetic quantum-criti