ﻻ يوجد ملخص باللغة العربية
We overview physical effects of exchange frustration and quantum spin fluctuations in (quasi-) two dimensional (2D) quantum magnets ($S=1/2$) with square, rectangular and triangular structure. Our discussion is based on the $J_1$-$J_2$ type frustrated exchange model and its generalizations. These models are closely related and allow to tune between different phases, magnetically ordered as well as more exotic nonmagnetic quantum phases by changing only one or two control parameters. We survey ground state properties like magnetization, saturation fields, ordered moment and structure factor in the full phase diagram as obtained from numerical exact diagonalization computations and analytical linear spin wave theory. We also review finite temperature properties like susceptibility, specific heat and magnetocaloric effect using the finite temperature Lanczos method. This method is powerful to determine the exchange parameters and g-factors from experimental results. We focus mostly on the observable physical frustration effects in magnetic phases where plenty of quasi-2D material examples exist to identify the influence of quantum fluctuations on magnetism.
Frustrated magnets in high magnetic field have a long history of offering beautiful surprises to the patient investigator. Here we present the results of extensive classical Monte Carlo simulations of a variety of models of two dimensional magnets in
We explore the phase diagram and the low-energy physics of three Heisenberg antiferromagnets which, like the kagome lattice, are networks of corner-sharing triangles but contain two sets of inequivalent short-distance resonance loops. We use a combin
Based on large-scale quantum Monte Carlo simulations, we examine the correlations along the edges of two-dimensional semi-infinite quantum critical Heisenberg spin-$1/2$ systems. In particular, we consider coupled quantum spin-dimer systems at their
We study effects of disorder (randomness) in a 2D square-lattice $S=1/2$ quantum spin system, the $J$-$Q$ model with a 6-spin interaction $Q$ supplementing the Heisenberg exchange $J$. In the absence of disorder the system hosts antiferromagnetic (AF
We study the critical breakdown of two-dimensional quantum magnets in the presence of algebraically decaying long-range interactions by investigating the transverse-field Ising model on the square and triangular lattice. This is achieved technically