ﻻ يوجد ملخص باللغة العربية
We study the critical breakdown of two-dimensional quantum magnets in the presence of algebraically decaying long-range interactions by investigating the transverse-field Ising model on the square and triangular lattice. This is achieved technically by combining perturbative continuous unitary transformations with classical Monte Carlo simulations to extract high-order series for the one-particle excitations in the high-field quantum paramagnet. We find that the unfrustrated systems change from mean-field to nearest-neighbor universality with continuously varying critical exponents, while the system remains in the universality class of the nearest-neighbor model in the frustrated cases independent of the long-range nature of the interaction.
We study a generalized quantum spin ladder with staggered long range interactions that decay as a power-law with exponent $alpha$. Using the density matrix renormalization group (DMRG) method and exact diagonalization, we show that this model undergo
We overview physical effects of exchange frustration and quantum spin fluctuations in (quasi-) two dimensional (2D) quantum magnets ($S=1/2$) with square, rectangular and triangular structure. Our discussion is based on the $J_1$-$J_2$ type frustrate
To gain a better understanding of the interplay between frustrated long-range interactions and zero-temperature quantum fluctuations, we investigate the ground-state phase diagram of the transverse-field Ising model with algebraically-decaying long-r
We analyze the thermodynamics and the critical behavior of the supersymmetric su($m$) $t$-$J$ model with long-range interactions. Using the transfer matrix formalism, we obtain a closed-form expression for the free energy per site both for a finite n
The critical behavior of dc magnetization in the uranium ferromagnet URhAl with the hexagonal ZrNiAl-type crystal structure has been studied around the ferromagnetic transition temperature T_C. The critical exponent beta for the temperature dependenc