ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous Modeling of Multiple Complications for Risk Profiling in Diabetes Care

158   0   0.0 ( 0 )
 نشر من قبل Bin Liu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Type 2 diabetes mellitus (T2DM) is a chronic disease that often results in multiple complications. Risk prediction and profiling of T2DM complications is critical for healthcare professionals to design personalized treatment plans for patients in diabetes care for improved outcomes. In this paper, we study the risk of developing complications after the initial T2DM diagnosis from longitudinal patient records. We propose a novel multi-task learning approach to simultaneously model multiple complications where each task corresponds to the risk modeling of one complication. Specifically, the proposed method strategically captures the relationships (1) between the risks of multiple T2DM complications, (2) between the different risk factors, and (3) between the risk factor selection patterns. The method uses coefficient shrinkage to identify an informative subset of risk factors from high-dimensional data, and uses a hierarchical Bayesian framework to allow domain knowledge to be incorporated as priors. The proposed method is favorable for healthcare applications because in additional to improved prediction performance, relationships among the different risks and risk factors are also identified. Extensive experimental results on a large electronic medical claims database show that the proposed method outperforms state-of-the-art models by a significant margin. Furthermore, we show that the risk associations learned and the risk factors identified lead to meaningful clinical insights.



قيم البحث

اقرأ أيضاً

Prediction of diabetes and its various complications has been studied in a number of settings, but a comprehensive overview of problem setting for diabetes prediction and care management has not been addressed in the literature. In this document we s eek to remedy this omission in literature with an encompassing overview of diabetes complication prediction as well as situating this problem in the context of real world healthcare management. We illustrate various problems encountered in real world clinical scenarios via our own experience with building and deploying such models. In this manuscript we illustrate a Machine Learning (ML) framework for addressing the problem of predicting Type 2 Diabetes Mellitus (T2DM) together with a solution for risk stratification, intervention and management. These ML models align with how physicians think about disease management and mitigation, which comprises these four steps: Identify, Stratify, Engage, Measure.
Trauma mortality results from a multitude of non-linear dependent risk factors including patient demographics, injury characteristics, medical care provided, and characteristics of medical facilities; yet traditional approach attempted to capture the se relationships using rigid regression models. We hypothesized that a transfer learning based machine learning algorithm could deeply understand a trauma patients condition and accurately identify individuals at high risk for mortality without relying on restrictive regression model criteria. Anonymous patient visit data were obtained from years 2007-2014 of the National Trauma Data Bank. Patients with incomplete vitals, unknown outcome, or missing demographics data were excluded. All patient visits occurred in U.S. hospitals, and of the 2,007,485 encounters that were retrospectively examined, 8,198 resulted in mortality (0.4%). The machine intelligence model was evaluated on its sensitivity, specificity, positive and negative predictive value, and Matthews Correlation Coefficient. Our model achieved similar performance in age-specific comparison models and generalized well when applied to all ages simultaneously. While testing for confounding factors, we discovered that excluding fall-related injuries boosted performance for adult trauma patients; however, it reduced performance for children. The machine intelligence model described here demonstrates similar performance to contemporary machine intelligence models without requiring restrictive regression model criteria or extensive medical expertise.
To meet the standard of differential privacy, noise is usually added into the original data, which inevitably deteriorates the predicting performance of subsequent learning algorithms. In this paper, motivated by the success of improving predicting p erformance by ensemble learning, we propose to enhance privacy-preserving logistic regression by stacking. We show that this can be done either by sample-based or feature-based partitioning. However, we prove that when privacy-budgets are the same, feature-based partitioning requires fewer samples than sample-based one, and thus likely has better empirical performance. As transfer learning is difficult to be integrated with a differential privacy guarantee, we further combine the proposed method with hypothesis transfer learning to address the problem of learning across different organizations. Finally, we not only demonstrate the effectiveness of our method on two benchmark data sets, i.e., MNIST and NEWS20, but also apply it into a real application of cross-organizational diabetes prediction from RUIJIN data set, where privacy is of significant concern.
Prediction tasks about students have practical significance for both student and college. Making multiple predictions about students is an important part of a smart campus. For instance, predicting whether a student will fail to graduate can alert th e student affairs office to take predictive measures to help the student improve his/her academic performance. With the development of information technology in colleges, we can collect digital footprints which encode heterogeneous behaviors continuously. In this paper, we focus on modeling heterogeneous behaviors and making multiple predictions together, since some prediction tasks are related and learning the model for a specific task may have the data sparsity problem. To this end, we propose a variant of LSTM and a soft-attention mechanism. The proposed LSTM is able to learn the student profile-aware representation from heterogeneous behavior sequences. The proposed soft-attention mechanism can dynamically learn different importance degrees of different days for every student. In this way, heterogeneous behaviors can be well modeled. In order to model interactions among multiple prediction tasks, we propose a co-attention mechanism based unit. With the help of the stacked units, we can explicitly control the knowledge transfer among multiple tasks. We design three motivating behavior prediction tasks based on a real-world dataset collected from a college. Qualitative and quantitative experiments on the three prediction tasks have demonstrated the effectiveness of our model.
Conversational agents (CAs) represent an emerging research field in health information systems, where there are great potentials in empowering patients with timely information and natural language interfaces. Nevertheless, there have been limited att empts in establishing prescriptive knowledge on designing CAs in the healthcare domain in general, and diabetes care specifically. In this paper, we conducted a Design Science Research project and proposed three design principles for designing health-related CAs that embark on artificial intelligence (AI) to address the limitations of existing solutions. Further, we instantiated the proposed design and developed AMANDA - an AI-based multilingual CA in diabetes care with state-of-the-art technologies for natural-sounding localised accent. We employed mean opinion scores and system usability scale to evaluate AMANDAs speech quality and usability, respectively. This paper provides practitioners with a blueprint for designing CAs in diabetes care with concrete design guidelines that can be extended into other healthcare domains.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا