ﻻ يوجد ملخص باللغة العربية
To meet the standard of differential privacy, noise is usually added into the original data, which inevitably deteriorates the predicting performance of subsequent learning algorithms. In this paper, motivated by the success of improving predicting performance by ensemble learning, we propose to enhance privacy-preserving logistic regression by stacking. We show that this can be done either by sample-based or feature-based partitioning. However, we prove that when privacy-budgets are the same, feature-based partitioning requires fewer samples than sample-based one, and thus likely has better empirical performance. As transfer learning is difficult to be integrated with a differential privacy guarantee, we further combine the proposed method with hypothesis transfer learning to address the problem of learning across different organizations. Finally, we not only demonstrate the effectiveness of our method on two benchmark data sets, i.e., MNIST and NEWS20, but also apply it into a real application of cross-organizational diabetes prediction from RUIJIN data set, where privacy is of significant concern.
Algorithms typically come with tunable parameters that have a considerable impact on the computational resources they consume. Too often, practitioners must hand-tune the parameters, a tedious and error-prone task. A recent line of research provides
This paper studies the relationship between generalization and privacy preservation in iterative learning algorithms by two sequential steps. We first establish an alignment between generalization and privacy preservation for any learning algorithm.
Deep reinforcement learning (RL) agents trained in a limited set of environments tend to suffer overfitting and fail to generalize to unseen testing environments. To improve their generalizability, data augmentation approaches (e.g. cutout and random
Type 2 diabetes mellitus (T2DM) is a chronic disease that often results in multiple complications. Risk prediction and profiling of T2DM complications is critical for healthcare professionals to design personalized treatment plans for patients in dia
The troposphere is one of the atmospheric layers where most weather phenomena occur. Temperature variations in the troposphere, especially at 500 hPa, a typical level of the middle troposphere, are significant indicators of future weather changes. Nu