ﻻ يوجد ملخص باللغة العربية
Trauma mortality results from a multitude of non-linear dependent risk factors including patient demographics, injury characteristics, medical care provided, and characteristics of medical facilities; yet traditional approach attempted to capture these relationships using rigid regression models. We hypothesized that a transfer learning based machine learning algorithm could deeply understand a trauma patients condition and accurately identify individuals at high risk for mortality without relying on restrictive regression model criteria. Anonymous patient visit data were obtained from years 2007-2014 of the National Trauma Data Bank. Patients with incomplete vitals, unknown outcome, or missing demographics data were excluded. All patient visits occurred in U.S. hospitals, and of the 2,007,485 encounters that were retrospectively examined, 8,198 resulted in mortality (0.4%). The machine intelligence model was evaluated on its sensitivity, specificity, positive and negative predictive value, and Matthews Correlation Coefficient. Our model achieved similar performance in age-specific comparison models and generalized well when applied to all ages simultaneously. While testing for confounding factors, we discovered that excluding fall-related injuries boosted performance for adult trauma patients; however, it reduced performance for children. The machine intelligence model described here demonstrates similar performance to contemporary machine intelligence models without requiring restrictive regression model criteria or extensive medical expertise.
During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is critical to inform decision-making. We propose a data-driven approach for automatic prediction of deterioration risk using a
Patients with severe Coronavirus disease 19 (COVID-19) typically require supplemental oxygen as an essential treatment. We developed a machine learning algorithm, based on a deep Reinforcement Learning (RL), for continuous management of oxygen flow r
With the development of the Internet of Things(IoT) and Artificial Intelligence(AI) technologies, human activity recognition has enabled various applications, such as smart homes and assisted living. In this paper, we target a new healthcare applicat
When might human input help (or not) when assessing risk in fairness domains? Dressel and Farid (2018) asked Mechanical Turk workers to evaluate a subset of defendants in the ProPublica COMPAS data for risk of recidivism, and concluded that COMPAS pr
Type 2 diabetes mellitus (T2DM) is a chronic disease that often results in multiple complications. Risk prediction and profiling of T2DM complications is critical for healthcare professionals to design personalized treatment plans for patients in dia