ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine Intelligence for Outcome Predictions of Trauma Patients During Emergency Department Care

86   0   0.0 ( 0 )
 نشر من قبل Joshua Cardosi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Trauma mortality results from a multitude of non-linear dependent risk factors including patient demographics, injury characteristics, medical care provided, and characteristics of medical facilities; yet traditional approach attempted to capture these relationships using rigid regression models. We hypothesized that a transfer learning based machine learning algorithm could deeply understand a trauma patients condition and accurately identify individuals at high risk for mortality without relying on restrictive regression model criteria. Anonymous patient visit data were obtained from years 2007-2014 of the National Trauma Data Bank. Patients with incomplete vitals, unknown outcome, or missing demographics data were excluded. All patient visits occurred in U.S. hospitals, and of the 2,007,485 encounters that were retrospectively examined, 8,198 resulted in mortality (0.4%). The machine intelligence model was evaluated on its sensitivity, specificity, positive and negative predictive value, and Matthews Correlation Coefficient. Our model achieved similar performance in age-specific comparison models and generalized well when applied to all ages simultaneously. While testing for confounding factors, we discovered that excluding fall-related injuries boosted performance for adult trauma patients; however, it reduced performance for children. The machine intelligence model described here demonstrates similar performance to contemporary machine intelligence models without requiring restrictive regression model criteria or extensive medical expertise.



قيم البحث

اقرأ أيضاً

During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is critical to inform decision-making. We propose a data-driven approach for automatic prediction of deterioration risk using a deep neural network that learns from chest X-ray images and a gradient boosting model that learns from routine clinical variables. Our AI prognosis system, trained using data from 3,661 patients, achieves an area under the receiver operating characteristic curve (AUC) of 0.786 (95% CI: 0.745-0.830) when predicting deterioration within 96 hours. The deep neural network extracts informative areas of chest X-ray images to assist clinicians in interpreting the predictions and performs comparably to two radiologists in a reader study. In order to verify performance in a real clinical setting, we silently deployed a preliminary version of the deep neural network at New York University Langone Health during the first wave of the pandemic, which produced accurate predictions in real-time. In summary, our findings demonstrate the potential of the proposed system for assisting front-line physicians in the triage of COVID-19 patients.
65 - Hua Zheng , Jiahao Zhu , Wei Xie 2021
Patients with severe Coronavirus disease 19 (COVID-19) typically require supplemental oxygen as an essential treatment. We developed a machine learning algorithm, based on a deep Reinforcement Learning (RL), for continuous management of oxygen flow r ate for critical ill patients under intensive care, which can identify the optimal personalized oxygen flow rate with strong potentials to reduce mortality rate relative to the current clinical practice. Basically, we modeled the oxygen flow trajectory of COVID-19 patients and their health outcomes as a Markov decision process. Based on individual patient characteristics and health status, a reinforcement learning based oxygen control policy is learned and real-time recommends the oxygen flow rate to reduce the mortality rate. We assessed the performance of proposed methods through cross validation by using a retrospective cohort of 1,372 critically ill patients with COVID-19 from New York University Langone Health ambulatory care with electronic health records from April 2020 to January 2021. The mean mortality rate under the RL algorithm is lower than standard of care by 2.57% (95% CI: 2.08- 3.06) reduction (P<0.001) from 7.94% under the standard of care to 5.37 % under our algorithm and the averaged recommended oxygen flow rate is 1.28 L/min (95% CI: 1.14-1.42) lower than the rate actually delivered to patients. Thus, the RL algorithm could potentially lead to better intensive care treatment that can reduce mortality rate, while saving the oxygen scarce resources. It can reduce the oxygen shortage issue and improve public health during the COVID-19 pandemic.
With the development of the Internet of Things(IoT) and Artificial Intelligence(AI) technologies, human activity recognition has enabled various applications, such as smart homes and assisted living. In this paper, we target a new healthcare applicat ion of human activity recognition, early mobility recognition for Intensive Care Unit(ICU) patients. Early mobility is essential for ICU patients who suffer from long-time immobilization. Our system includes accelerometer-based data collection from ICU patients and an AI model to recognize patients early mobility. To improve the model accuracy and stability, we identify features that are insensitive to sensor orientations and propose a segment voting process that leverages a majority voting strategy to recognize each segments activity. Our results show that our system improves model accuracy from 77.78% to 81.86% and reduces the model instability (standard deviation) from 16.69% to 6.92%, compared to the same AI model without our feature engineering and segment voting process.
When might human input help (or not) when assessing risk in fairness domains? Dressel and Farid (2018) asked Mechanical Turk workers to evaluate a subset of defendants in the ProPublica COMPAS data for risk of recidivism, and concluded that COMPAS pr edictions were no more accurate or fair than predictions made by humans. We delve deeper into this claim to explore differences in human and algorithmic decision making. We construct a Human Risk Score based on the predictions made by multiple Turk workers, characterize the features that determine agreement and disagreement between COMPAS and Human Scores, and construct hybrid Human+Machine models to predict recidivism. Our key finding is that on this data set, Human and COMPAS decision making differed, but not in ways that could be leveraged to significantly improve ground-truth prediction. We present the results of our analyses and suggestions for data collection best practices to leverage complementary strengths of human and machines in the fairness domain.
157 - Bin Liu , Ying Li , Soumya Ghosh 2018
Type 2 diabetes mellitus (T2DM) is a chronic disease that often results in multiple complications. Risk prediction and profiling of T2DM complications is critical for healthcare professionals to design personalized treatment plans for patients in dia betes care for improved outcomes. In this paper, we study the risk of developing complications after the initial T2DM diagnosis from longitudinal patient records. We propose a novel multi-task learning approach to simultaneously model multiple complications where each task corresponds to the risk modeling of one complication. Specifically, the proposed method strategically captures the relationships (1) between the risks of multiple T2DM complications, (2) between the different risk factors, and (3) between the risk factor selection patterns. The method uses coefficient shrinkage to identify an informative subset of risk factors from high-dimensional data, and uses a hierarchical Bayesian framework to allow domain knowledge to be incorporated as priors. The proposed method is favorable for healthcare applications because in additional to improved prediction performance, relationships among the different risks and risk factors are also identified. Extensive experimental results on a large electronic medical claims database show that the proposed method outperforms state-of-the-art models by a significant margin. Furthermore, we show that the risk associations learned and the risk factors identified lead to meaningful clinical insights.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا