ترغب بنشر مسار تعليمي؟ اضغط هنا

RoadTracer: Automatic Extraction of Road Networks from Aerial Images

122   0   0.0 ( 0 )
 نشر من قبل Favyen Bastani
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Mapping road networks is currently both expensive and labor-intensive. High-resolution aerial imagery provides a promising avenue to automatically infer a road network. Prior work uses convolutional neural networks (CNNs) to detect which pixels belong to a road (segmentation), and then uses complex post-processing heuristics to infer graph connectivity. We show that these segmentation methods have high error rates because noisy CNN outputs are difficult to correct. We propose RoadTracer, a new method to automatically construct accurate road network maps from aerial images. RoadTracer uses an iterative search process guided by a CNN-based decision function to derive the road network graph directly from the output of the CNN. We compare our approach with a segmentation method on fifteen cities, and find that at a 5% error rate, RoadTracer correctly captures 45% more junctions across these cities.



قيم البحث

اقرأ أيضاً

Automatic map extraction is of great importance to urban computing and location-based services. Aerial image and GPS trajectory data refer to two different data sources that could be leveraged to generate the map, although they carry different types of information. Most previous works on data fusion between aerial images and data from auxiliary sensors do not fully utilize the information of both modalities and hence suffer from the issue of information loss. We propose a deep convolutional neural network called DeepDualMapper which fuses the aerial image and trajectory data in a more seamless manner to extract the digital map. We design a gated fusion module to explicitly control the information flows from both modalities in a complementary-aware manner. Moreover, we propose a novel densely supervised refinement decoder to generate the prediction in a coarse-to-fine way. Our comprehensive experiments demonstrate that DeepDualMapper can fuse the information of images and trajectories much more effectively than existing approaches, and is able to generate maps with higher accuracy.
This work describes a novel methodology for automatic contour extraction from 2D images of 3D neurons (e.g. camera lucida images and other types of 2D microscopy). Most contour-based shape analysis methods can not be used to characterize such cells b ecause of overlaps between neuronal processes. The proposed framework is specifically aimed at the problem of contour following even in presence of multiple overlaps. First, the input image is preprocessed in order to obtain an 8-connected skeleton with one-pixel-wide branches, as well as a set of critical regions (i.e., bifurcations and crossings). Next, for each subtree, the tracking stage iteratively labels all valid pixel of branches, up to a critical region, where it determines the suitable direction to proceed. Finally, the labeled skeleton segments are followed in order to yield the parametric contour of the neuronal shape under analysis. The reported system was successfully tested with respect to several images and the results from a set of three neuron images are presented here, each pertaining to a different class, i.e. alpha, delta and epsilon ganglion cells, containing a total of 34 crossings. The algorithms successfully got across all these overlaps. The method has also been found to exhibit robustness even for images with close parallel segments. The proposed method is robust and may be implemented in an efficient manner. The introduction of this approach should pave the way for more systematic application of contour-based shape analysis methods in neuronal morphology.
Drones or UAVs, equipped with different sensors, have been deployed in many places especially for urban traffic monitoring or last-mile delivery. It provides the ability to control the different aspects of traffic given real-time obeservations, an im portant pillar for the future of transportation and smart cities. With the increasing use of such machines, many previous state-of-the-art object detectors, who have achieved high performance on front facing cameras, are being used on UAV datasets. When applied to high-resolution aerial images captured from such datasets, they fail to generalize to the wide range of objects scales. In order to address this limitation, we propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images. We extend the concept of fields and introduce butterfly fields, a type of composite field that describes the spatial information of output features as well as the scale of the detected object. To overcome occlusion and viewing angle variations that can hinder the localization process, we employ a voting mechanism between related butterfly vectors pointing to the object center. We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
Detection of road curbs is an essential capability for autonomous driving. It can be used for autonomous vehicles to determine drivable areas on roads. Usually, road curbs are detected on-line using vehicle-mounted sensors, such as video cameras and 3-D Lidars. However, on-line detection using video cameras may suffer from challenging illumination conditions, and Lidar-based approaches may be difficult to detect far-away road curbs due to the sparsity issue of point clouds. In recent years, aerial images are becoming more and more worldwide available. We find that the visual appearances between road areas and off-road areas are usually different in aerial images, so we propose a novel solution to detect road curbs off-line using aerial images. The input to our method is an aerial image, and the output is directly a graph (i.e., vertices and edges) representing road curbs. To this end, we formulate the problem as an imitation learning problem, and design a novel network and an innovative training strategy to train an agent to iteratively find the road-curb graph. The experimental results on a public dataset confirm the effectiveness and superiority of our method. This work is accompanied with a demonstration video and a supplementary document at https://tonyxuqaq.github.io/iCurb/.
Road extraction is an essential step in building autonomous navigation systems. Detecting road segments is challenging as they are of varying widths, bifurcated throughout the image, and are often occluded by terrain, cloud, or other weather conditio ns. Using just convolution neural networks (ConvNets) for this problem is not effective as it is inefficient at capturing distant dependencies between road segments in the image which is essential to extract road connectivity. To this end, we propose a Spatial and Interaction Space Graph Reasoning (SPIN) module which when plugged into a ConvNet performs reasoning over graphs constructed on spatial and interaction spaces projected from the feature maps. Reasoning over spatial space extracts dependencies between different spatial regions and other contextual information. Reasoning over a projected interaction space helps in appropriate delineation of roads from other topographies present in the image. Thus, SPIN extracts long-range dependencies between road segments and effectively delineates roads from other semantics. We also introduce a SPIN pyramid which performs SPIN graph reasoning across multiple scales to extract multi-scale features. We propose a network based on stacked hourglass modules and SPIN pyramid for road segmentation which achieves better performance compared to existing methods. Moreover, our method is computationally efficient and significantly boosts the convergence speed during training, making it feasible for applying on large-scale high-resolution aerial images. Code available at: https://github.com/wgcban/SPIN_RoadMapper.git.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا