ﻻ يوجد ملخص باللغة العربية
This work describes a novel methodology for automatic contour extraction from 2D images of 3D neurons (e.g. camera lucida images and other types of 2D microscopy). Most contour-based shape analysis methods can not be used to characterize such cells because of overlaps between neuronal processes. The proposed framework is specifically aimed at the problem of contour following even in presence of multiple overlaps. First, the input image is preprocessed in order to obtain an 8-connected skeleton with one-pixel-wide branches, as well as a set of critical regions (i.e., bifurcations and crossings). Next, for each subtree, the tracking stage iteratively labels all valid pixel of branches, up to a critical region, where it determines the suitable direction to proceed. Finally, the labeled skeleton segments are followed in order to yield the parametric contour of the neuronal shape under analysis. The reported system was successfully tested with respect to several images and the results from a set of three neuron images are presented here, each pertaining to a different class, i.e. alpha, delta and epsilon ganglion cells, containing a total of 34 crossings. The algorithms successfully got across all these overlaps. The method has also been found to exhibit robustness even for images with close parallel segments. The proposed method is robust and may be implemented in an efficient manner. The introduction of this approach should pave the way for more systematic application of contour-based shape analysis methods in neuronal morphology.
Mapping road networks is currently both expensive and labor-intensive. High-resolution aerial imagery provides a promising avenue to automatically infer a road network. Prior work uses convolutional neural networks (CNNs) to detect which pixels belon
EventNet is a large-scale video corpus and event ontology consisting of 500 events associated with event-specific concepts. In order to improve the quality of the current EventNet, we conduct the following steps and introduce EventNet version 1.1: (1
We exam various geometric active contour methods for radar image segmentation. Due to special properties of radar images, we propose our new model based on modified Chan-Vese functional. Our method is efficient in separating non-meteorological noises from meteorological images.
Approximately 2,500 weights and corresponding images of harvested Lates calcarifer (Asian seabass or barramundi) were collected at three different locations in Queensland, Australia. Two instances of the LinkNet-34 segmentation Convolutional Neural N
Automatic map extraction is of great importance to urban computing and location-based services. Aerial image and GPS trajectory data refer to two different data sources that could be leveraged to generate the map, although they carry different types