ترغب بنشر مسار تعليمي؟ اضغط هنا

iCurb: Imitation Learning-based Detection of Road Curbs using Aerial Images for Autonomous Driving

84   0   0.0 ( 0 )
 نشر من قبل Zhenhua Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Detection of road curbs is an essential capability for autonomous driving. It can be used for autonomous vehicles to determine drivable areas on roads. Usually, road curbs are detected on-line using vehicle-mounted sensors, such as video cameras and 3-D Lidars. However, on-line detection using video cameras may suffer from challenging illumination conditions, and Lidar-based approaches may be difficult to detect far-away road curbs due to the sparsity issue of point clouds. In recent years, aerial images are becoming more and more worldwide available. We find that the visual appearances between road areas and off-road areas are usually different in aerial images, so we propose a novel solution to detect road curbs off-line using aerial images. The input to our method is an aerial image, and the output is directly a graph (i.e., vertices and edges) representing road curbs. To this end, we formulate the problem as an imitation learning problem, and design a novel network and an innovative training strategy to train an agent to iteratively find the road-curb graph. The experimental results on a public dataset confirm the effectiveness and superiority of our method. This work is accompanied with a demonstration video and a supplementary document at https://tonyxuqaq.github.io/iCurb/.

قيم البحث

اقرأ أيضاً

Road-boundary detection is important for autonomous driving. It can be used to constrain autonomous vehicles running on road areas to ensure driving safety. Compared with online road-boundary detection using on-vehicle cameras/Lidars, offline detecti on using aerial images could alleviate the severe occlusion issue. Moreover, the offline detection results can be directly employed to annotate high-definition (HD) maps. In recent years, deep-learning technologies have been used in offline detection. But there still lacks a publicly available dataset for this task, which hinders the research progress in this area. So in this paper, we propose a new benchmark dataset, named textit{Topo-boundary}, for offline topological road-boundary detection. The dataset contains 25,295 $1000times1000$-sized 4-channel aerial images. Each image is provided with 8 training labels for different sub-tasks. We also design a new entropy-based metric for connectivity evaluation, which could better handle noises or outliers. We implement and evaluate 3 segmentation-based baselines and 5 graph-based baselines using the dataset. We also propose a new imitation-learning-based baseline which is enhanced from our previous work. The superiority of our enhancement is demonstrated from the comparison. The dataset and our-implemented code for the baselines are available at texttt{url{https://tonyxuqaq.github.io/Topo-boundary/}}.
Road curb detection is important for autonomous driving. It can be used to determine road boundaries to constrain vehicles on roads, so that potential accidents could be avoided. Most of the current methods detect road curbs online using vehicle-moun ted sensors, such as cameras or 3-D Lidars. However, these methods usually suffer from severe occlusion issues. Especially in highly-dynamic traffic environments, most of the field of view is occupied by dynamic objects. To alleviate this issue, we detect road curbs offline using high-resolution aerial images in this paper. Moreover, the detected road curbs can be used to create high-definition (HD) maps for autonomous vehicles. Specifically, we first predict the pixel-wise segmentation map of road curbs, and then conduct a series of post-processing steps to extract the graph structure of road curbs. To tackle the disconnectivity issue in the segmentation maps, we propose an innovative connectivity-preserving loss (CP-loss) to improve the segmentation performance. The experimental results on a public dataset demonstrate the effectiveness of our proposed loss function. This paper is accompanied with a demonstration video and a supplementary document, which are available at texttt{url{https://sites.google.com/view/cp-loss}}.
Road extraction is an essential step in building autonomous navigation systems. Detecting road segments is challenging as they are of varying widths, bifurcated throughout the image, and are often occluded by terrain, cloud, or other weather conditio ns. Using just convolution neural networks (ConvNets) for this problem is not effective as it is inefficient at capturing distant dependencies between road segments in the image which is essential to extract road connectivity. To this end, we propose a Spatial and Interaction Space Graph Reasoning (SPIN) module which when plugged into a ConvNet performs reasoning over graphs constructed on spatial and interaction spaces projected from the feature maps. Reasoning over spatial space extracts dependencies between different spatial regions and other contextual information. Reasoning over a projected interaction space helps in appropriate delineation of roads from other topographies present in the image. Thus, SPIN extracts long-range dependencies between road segments and effectively delineates roads from other semantics. We also introduce a SPIN pyramid which performs SPIN graph reasoning across multiple scales to extract multi-scale features. We propose a network based on stacked hourglass modules and SPIN pyramid for road segmentation which achieves better performance compared to existing methods. Moreover, our method is computationally efficient and significantly boosts the convergence speed during training, making it feasible for applying on large-scale high-resolution aerial images. Code available at: https://github.com/wgcban/SPIN_RoadMapper.git.
Estimating the 3D position and orientation of objects in the environment with a single RGB camera is a critical and challenging task for low-cost urban autonomous driving and mobile robots. Most of the existing algorithms are based on the geometric c onstraints in 2D-3D correspondence, which stems from generic 6D object pose estimation. We first identify how the ground plane provides additional clues in depth reasoning in 3D detection in driving scenes. Based on this observation, we then improve the processing of 3D anchors and introduce a novel neural network module to fully utilize such application-specific priors in the framework of deep learning. Finally, we introduce an efficient neural network embedded with the proposed module for 3D object detection. We further verify the power of the proposed module with a neural network designed for monocular depth prediction. The two proposed networks achieve state-of-the-art performances on the KITTI 3D object detection and depth prediction benchmarks, respectively. The code will be published in https://www.github.com/Owen-Liuyuxuan/visualDet3D
193 - Libo Sun , Haokui Zhang , Wei Yin 2021
Road detection is a critically important task for self-driving cars. By employing LiDAR data, recent works have significantly improved the accuracy of road detection. Relying on LiDAR sensors limits the wide application of those methods when only cam eras are available. In this paper, we propose a novel road detection approach with RGB being the only input during inference. Specifically, we exploit pseudo-LiDAR using depth estimation, and propose a feature fusion network where RGB and learned depth information are fused for improved road detection. To further optimize the network structure and improve the efficiency of the network. we search for the network structure of the feature fusion module using NAS techniques. Finally, be aware of that generating pseudo-LiDAR from RGB via depth estimation introduces extra computational costs and relies on depth estimation networks, we design a modality distillation strategy and leverage it to further free our network from these extra computational cost and dependencies during inference. The proposed method achieves state-of-the-art performance on two challenging benchmarks, KITTI and R2D.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا