ﻻ يوجد ملخص باللغة العربية
Epitaxial films of Co40Fe40B20 (further - CoFeB) were grown on Bi2Te3(001) and Bi2Se3(001) substrates by laser molecular beam epitaxy (LMBE) technique at 200-400C. Bcc-type crystalline structure of CoFeB with (111) plane parallel to (001) plane of Bi2Te3 was observed, in contrast to polycrystalline CoFeB film formed on Bi2Se3(001) at RT using high-temperature seeding layer. Therefore, structurally ordered ferromagnetic thin films were obtained on the topological insulator surface for the first time. Using high energy electron diffraction (RHEED) 3D reciprocal space mapping, epitaxial relations of main crystallographic axes for the CoFeB/ Bi2Te3 heterostructure were revealed. MOKE and AFM measurements showed the isotropic azimuthal in-plane behavior of magnetization vector in CoFeB/ Bi2Te3, in contrast to 2nd order magnetic anisotropy seen in CoFeB/Bi2Se3. XPS measurements showed more stable behavior of CoFeB grown on Bi2Te3 to the oxidation, in compare to CoFeB grown on Bi2Se3. XAS and XMCD measurements of both concerned nanostructures allowed calculation of spin and orbital magnetic moments for Co and Fe. Additionally, crystalline structure and XMCD response of the CoFeB/BiTeI and Co55Fe45/BiTeI systems were studied, epitaxial relations of main crystallographic axes were found, and spin and orbital magnetic moments were calculated.
We report comprehensive x-ray diffraction studies of the crystal structure and epitaxy of thin films of the topological insulator Bi2Te3 grown on Si (1 1 1). The films are single crystals of high crystalline quality, which strongly depends on that of
Co40Fe40B20 layers were grown on the Pb0.71Sn0.29Te topological insulator substrates by laser molecular beam epitaxy (LMBE) method, and the growth conditions were studied. The possibility of growing epitaxial layers of a ferromagnet on the surface of
Electronic structures of the tetradymites, Bi$_2$Te$_3$, Bi$_2$Te$_2$Se and Bi$_2$Se$_3$, containing various dopants and vacancies, are studied using the first principles calculations methods. We focus on the possibility of formation of the resonant
Using high-resolution angle-resolved photoemission spectroscopy, the electronic structure near the Fermi level and the topological property of the Bi(111) films grown on the Bi$_2$Te$_3$(111) substrate were studied. Very different from the bulk Bi, w
Magnetic interaction with the gapless surface states in topological insulator (TI) has been predicted to give rise to a few exotic quantum phenomena. However, the effective magnetic doping of TI is still challenging in experiment. Using first-princip