ﻻ يوجد ملخص باللغة العربية
Electronic structures of the tetradymites, Bi$_2$Te$_3$, Bi$_2$Te$_2$Se and Bi$_2$Se$_3$, containing various dopants and vacancies, are studied using the first principles calculations methods. We focus on the possibility of formation of the resonant levels (RL), confirming the formation of the RL by Sn in Bi$_2$Te$_3$, and predicting similar behavior of Sn in Bi$_2$Te$_2$Se and Bi$_2$Se$_3$. Vacancies, which are likely present on the chalcogen atoms in the real samples of Bi$_2$Te$_2$Se and Bi$_2$Se$_3$, are also studied and their charged donor and resonant behavior is discussed. Doping of the vacancy-containing materials with regular acceptors, like Ca or Mg, is shown to compensate the donor effect of vacancies, and $n-p$ crossover, while increasing the dopant concentration, is observed. We verify, that RL on Sn is not disturbed by the chalcogen vacancies in Bi$_2$Te$_2$Se and Bi$_2$Se$_3$, and for the Sn-doped materials with Se or Te vacancies, double-doping, instead of heavy doping with Sn, is suggested as an effective way of reaching the resonant level. This should help to avoid the smearing of the RL, which was a possible reason for an earlier unsuccessful experimental observation of the influence of the RL on thermoelectric properties of Sn doped Bi$_2$Te$_2$Se. Finally we show, that Al and Ga are possible new resonant impurities in the tetradymites, hoping that it will stimulate further experimental studies.
We analyze the finite lifetimes of the topologically protected electrons in the surface state of Bi2Te3 and Bi2Se3 due to elastic scattering off surface vacancies and as a function of energy. The scattering rates are decomposed into surface-to-surfac
Epitaxial films of Co40Fe40B20 (further - CoFeB) were grown on Bi2Te3(001) and Bi2Se3(001) substrates by laser molecular beam epitaxy (LMBE) technique at 200-400C. Bcc-type crystalline structure of CoFeB with (111) plane parallel to (001) plane of Bi
Electron irradiation is investigated as a way to dope the topological insulator Bi2Te3. For this, p-type Bi2Te3 single crystals have been irradiated with 2.5 MeV electrons at room temperature and electrical measurements have been performed in-situ as
Magnetic interaction with the gapless surface states in topological insulator (TI) has been predicted to give rise to a few exotic quantum phenomena. However, the effective magnetic doping of TI is still challenging in experiment. Using first-princip
Magnetic doping with transition metal ions is the most widely used approach to break timereversal symmetry in a topological insulator, a prerequisite for unlocking the TIs exotic potential. Recently, we reported the doping of Bi2Te3 thin films with r