ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple Stopping Time POMDPs: Structural Results & Application in Interactive Advertising in Social Media

61   0   0.0 ( 0 )
 نشر من قبل Vikram Krishnamurthy
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers a multiple stopping time problem for a Markov chain observed in noise, where a decision maker chooses at most L stopping times to maximize a cumulative objective. We formulate the problem as a Partially Observed Markov Decision Process (POMDP) and derive structural results for the optimal multiple stopping policy. The main results are as follows: i) The optimal multiple stopping policy is shown to be characterized by threshold curves in the unit simplex of Bayesian Posteriors. ii) The stopping setsl (defined by the threshold curves) are shown to exhibit a nested structure. iii) The optimal cumulative reward is shown to be monotone with respect to the copositive ordering of the transition matrix. iv) A stochastic gradient algorithm is provided for estimating linear threshold policies by exploiting the structural results. These linear threshold policies approximate the threshold curves, and share the monotone structure of the optimal multiple stopping policy. As an illustrative example, we apply the multiple stopping framework to interactively schedule advertisements in live online social media. It is shown that advertisement scheduling using multiple stopping performs significantly better than currently used methods.



قيم البحث

اقرأ أيضاً

Live online social broadcasting services like YouTube Live and Twitch have steadily gained popularity due to improved bandwidth, ease of generating content and the ability to earn revenue on the generated content. In contrast to traditional cable tel evision, revenue in online services is generated solely through advertisements, and depends on the number of clicks generated. Channel owners aim to opportunistically schedule advertisements so as to generate maximum revenue. This paper considers the problem of optimal scheduling of advertisements in live online social media. The problem is formulated as a multiple stopping problem and is addressed in a partially observed Markov decision process (POMDP) framework. Structural results are provided on the optimal advertisement scheduling policy. By exploiting the structure of the optimal policy, best linear thresholds are computed using stochastic approximation. The proposed model and framework are validated on real datasets, and the following observations are made: (i) The policy obtained by the multiple stopping problem can be used to detect changes in ground truth from online search data (ii) Numerical results show a significant improvement in the expected revenue by opportunistically scheduling the advertisements. The revenue can be improved by $20-30%$ in comparison to currently employed periodic scheduling.
219 - Jisun An , Haewoon Kwak 2019
Gender and racial diversity in the mediated images from the media shape our perception of different demographic groups. In this work, we investigate gender and racial diversity of 85,957 advertising images shared by the 73 top international brands on Instagram and Facebook. We hope that our analyses give guidelines on how to build a fully automated watchdog for gender and racial diversity in online advertisements.
76 - Hongtao Liu 2019
A growing number of empirical studies suggest that negative advertising is effective in campaigning, while the mechanisms are rarely mentioned. With the scandal of Cambridge Analytica and Russian intervention behind the Brexit and the 2016 presidenti al election, people have become aware of the political ads on social media and have pressured congress to restrict political advertising on social media. Following the related legislation, social media companies began disclosing their political ads archive for transparency during the summer of 2018 when the midterm election campaign was just beginning. This research collects the data of the related political ads in the context of the U.S. midterm elections since August to study the overall pattern of political ads on social media and uses sets of machine learning methods to conduct sentiment analysis on these ads to classify the negative ads. A novel approach is applied that uses AI image recognition to study the image data. Through data visualization, this research shows that negative advertising is still the minority, Republican advertisers and third party organizations are more likely to engage in negative advertising than their counterparts. Based on ordinal regressions, this study finds that anger evoked information-seeking is one of the main mechanisms causing negative ads to be more engaging and effective rather than the negative bias theory. Overall, this study provides a unique understanding of political advertising on social media by applying innovative data science methods. Further studies can extend the findings, methods, and datasets in this study, and several suggestions are given for future research.
Businesses communicate using Twitter for a variety of reasons -- to raise awareness of their brands, to market new products, to respond to community comments, and to connect with their customers and potential customers in a targeted manner. For busin esses to do this effectively, they need to understand which content and structural elements about a tweet make it influential, that is, widely liked, followed, and retweeted. This paper presents a systematic methodology for analyzing commercial tweets, and predicting the influence on their readers. Our model, which use a combination of decoration and meta features, outperforms the prediction ability of the baseline model as well as the tweet embedding model. Further, in order to demonstrate a practical use of this work, we show how an unsuccessful tweet may be engineered (for example, reworded) to increase its potential for success.
We study the problem of controlling a partially observed Markov decision process (POMDP) to either aid or hinder the estimation of its state trajectory by optimising the conditional entropy of the state trajectory given measurements and controls, a q uantity we dub the smoother entropy. Our consideration of the smoother entropy contrasts with previous active state estimation and obfuscation approaches that instead resort to measures of marginal (or instantaneous) state uncertainty due to tractability concerns. By establishing novel expressions of the smoother entropy in terms of the usual POMDP belief state, we show that our active estimation and obfuscation problems can be reformulated as Markov decision processes (MDPs) that are fully observed in the belief state. Surprisingly, we identify belief-state MDP reformulations of both active estimation and obfuscation with concave cost and cost-to-go functions, which enables the use of standard POMDP techniques to construct tractable bounded-error (approximate) solutions. We show in simulations that optimisation of the smoother entropy leads to superior trajectory estimation and obfuscation compared to alternative approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا