ﻻ يوجد ملخص باللغة العربية
We study the problem of controlling a partially observed Markov decision process (POMDP) to either aid or hinder the estimation of its state trajectory by optimising the conditional entropy of the state trajectory given measurements and controls, a quantity we dub the smoother entropy. Our consideration of the smoother entropy contrasts with previous active state estimation and obfuscation approaches that instead resort to measures of marginal (or instantaneous) state uncertainty due to tractability concerns. By establishing novel expressions of the smoother entropy in terms of the usual POMDP belief state, we show that our active estimation and obfuscation problems can be reformulated as Markov decision processes (MDPs) that are fully observed in the belief state. Surprisingly, we identify belief-state MDP reformulations of both active estimation and obfuscation with concave cost and cost-to-go functions, which enables the use of standard POMDP techniques to construct tractable bounded-error (approximate) solutions. We show in simulations that optimisation of the smoother entropy leads to superior trajectory estimation and obfuscation compared to alternative approaches.
In this paper, we consider the problem of controlling a partially observed Markov decision process (POMDP) in order to actively estimate its state trajectory over a fixed horizon with minimal uncertainty. We pose a novel active smoothing problem in w
In this work, we investigate a state estimation problem for a full-car semi-active suspension system. To account for the complex calculation and optimization problems, a vehicle-to- cloud-to-vehicle (V2C2V) scheme is utilized. Moving horizon estimati
Learning cooperative policies for multi-agent systems is often challenged by partial observability and a lack of coordination. In some settings, the structure of a problem allows a distributed solution with limited communication. Here, we consider a
We introduce a formal model for the information leakage of probability distributions and define a notion called distribution privacy as the local differential privacy for probability distributions. Roughly, the distribution privacy of a local obfusca
This paper introduces Voronoi Progressive Widening (VPW), a generalization of Voronoi optimistic optimization (VOO) and action progressive widening to partially observable Markov decision processes (POMDPs). Tree search algorithms can use VPW to effe