ﻻ يوجد ملخص باللغة العربية
Live online social broadcasting services like YouTube Live and Twitch have steadily gained popularity due to improved bandwidth, ease of generating content and the ability to earn revenue on the generated content. In contrast to traditional cable television, revenue in online services is generated solely through advertisements, and depends on the number of clicks generated. Channel owners aim to opportunistically schedule advertisements so as to generate maximum revenue. This paper considers the problem of optimal scheduling of advertisements in live online social media. The problem is formulated as a multiple stopping problem and is addressed in a partially observed Markov decision process (POMDP) framework. Structural results are provided on the optimal advertisement scheduling policy. By exploiting the structure of the optimal policy, best linear thresholds are computed using stochastic approximation. The proposed model and framework are validated on real datasets, and the following observations are made: (i) The policy obtained by the multiple stopping problem can be used to detect changes in ground truth from online search data (ii) Numerical results show a significant improvement in the expected revenue by opportunistically scheduling the advertisements. The revenue can be improved by $20-30%$ in comparison to currently employed periodic scheduling.
This paper considers a multiple stopping time problem for a Markov chain observed in noise, where a decision maker chooses at most L stopping times to maximize a cumulative objective. We formulate the problem as a Partially Observed Markov Decision P
A rapidly evolving situation such as the COVID-19 pandemic is a significant challenge for AI/ML models because of its unpredictability. %The most reliable indicator of the pandemic spreading has been the number of test positive cases. However, the te
It has been insufficiently explored how to perform density-based clustering by exploiting textual attributes on social media. In this paper, we aim at discovering a social point-of-interest (POI) boundary, formed as a convex polygon. More specificall
The increasing pervasiveness of social media creates new opportunities to study human social behavior, while challenging our capability to analyze their massive data streams. One of the emerging tasks is to distinguish between different kinds of acti
A key challenge in mining social media data streams is to identify events which are actively discussed by a group of people in a specific local or global area. Such events are useful for early warning for accident, protest, election or breaking news.