ﻻ يوجد ملخص باللغة العربية
Discovering pulsars is a significant and meaningful research topic in the field of radio astronomy. With the advent of astronomical instruments such as he Five-hundred-meter Aperture Spherical Telescope (FAST) in China, data volumes and data rates are exponentially growing. This fact necessitates a focus on artificial intelligence (AI) technologies that can perform the automatic pulsar candidate identification to mine large astronomical data sets. Automatic pulsar candidate identification can be considered as a task of determining potential candidates for further investigation and eliminating noises of radio frequency interferences or other non-pulsar signals. It is very hard to raise the performance of DCNN-based pulsar identification because the limited training samples restrict network structure to be designed deep enough for learning good features as well as the crucial class imbalance problem due to very limited number of real pulsar samples. To address these problems, we proposed a framework which combines deep convolution generative adversarial network (DCGAN) with support vector machine (SVM) to deal with imbalance class problem and to improve pulsar identification accuracy. DCGAN is used as sample generation and feature learning model, and SVM is adopted as the classifier for predicting candidates labels in the inference stage. The proposed framework is a novel technique which not only can solve imbalance class problem but also can learn discriminative feature representations of pulsar candidates instead of computing hand-crafted features in preprocessing steps too, which makes it more accurate for automatic pulsar candidate selection. Experiments on two pulsar datasets verify the effectiveness and efficiency of our proposed method.
Machine learning methods are increasingly helping astronomers identify new radio pulsars. However, they require a large amount of labelled data, which is time consuming to produce and biased. Here we describe a Semi-Supervised Generative Adversarial
Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in a wide range of applications, such as virtual screening and drug design. In this survey, we first give an ov
We describe the procedure, nuances, issues, and choices involved in creating times-of-arrival (TOAs), residuals and error bars from a set of radio pulsar timing data. We discuss the issue of mis-matched templates, the problem that wide- bandwidth bac
Molecules composed of atoms exhibit properties not inherent to their constituent atoms. Similarly, meta-molecules consisting of multiple meta-atoms possess emerging features that the meta-atoms themselves do not possess. Metasurfaces composed of meta
This study evaluated generative methods to potentially mitigate AI bias when diagnosing diabetic retinopathy (DR) resulting from training data imbalance, or domain generalization which occurs when deep learning systems (DLS) face concepts at test/inf