ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsar Candidate Identification Using Semi-Supervised Generative Adversarial Networks

62   0   0.0 ( 0 )
 نشر من قبل Vishnu Balakrishnan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine learning methods are increasingly helping astronomers identify new radio pulsars. However, they require a large amount of labelled data, which is time consuming to produce and biased. Here we describe a Semi-Supervised Generative Adversarial Network (SGAN) which achieves better classification performance than the standard supervised algorithms using majority unlabelled datasets. We achieved an accuracy and mean F-Score of 94.9% trained on only 100 labelled candidates and 5000 unlabelled candidates compared to our standard supervised baseline which scored at 81.1% and 82.7% respectively. Our final model trained on a much larger labelled dataset achieved an accuracy and mean F-score value of 99.2% and a recall rate of 99.7%. This technique allows for high quality classification during the early stages of pulsar surveys on new instruments when limited labelled data is available. We open-source our work along with a new pulsar-candidate dataset produced from the High Time Resolution Universe - South Low Latitude Survey. This dataset has the largest number of pulsar detections of any public dataset and we hope it will be a valuable tool for benchmarking future machine learning models.

قيم البحث

اقرأ أيضاً

In this article, we propose an approach that can make use of not only labeled EEG signals but also the unlabeled ones which is more accessible. We also suggest the use of data fusion to further improve the seizure prediction accuracy. Data fusion in our vision includes EEG signals, cardiogram signals, body temperature and time. We use the short-time Fourier transform on 28-s EEG windows as a pre-processing step. A generative adversarial network (GAN) is trained in an unsupervised manner where information of seizure onset is disregarded. The trained Discriminator of the GAN is then used as feature extractor. Features generated by the feature extractor are classified by two fully-connected layers (can be replaced by any classifier) for the labeled EEG signals. This semi-supervised seizure prediction method achieves area under the operating characteristic curve (AUC) of 77.68% and 75.47% for the CHBMIT scalp EEG dataset and the Freiburg Hospital intracranial EEG dataset, respectively. Unsupervised training without the need of labeling is important because not only it can be performed in real-time during EEG signal recording, but also it does not require feature engineering effort for each patient.
362 - Haoqian Wang , Zhiwei Xu , Jun Xu 2019
Image recognition is an important topic in computer vision and image processing, and has been mainly addressed by supervised deep learning methods, which need a large set of labeled images to achieve promising performance. However, in most cases, lab eled data are expensive or even impossible to obtain, while unlabeled data are readily available from numerous free on-line resources and have been exploited to improve the performance of deep neural networks. To better exploit the power of unlabeled data for image recognition, in this paper, we propose a semi-supervised and generative approach, namely the semi-supervised self-growing generative adversarial network (SGGAN). Label inference is a key step for the success of semi-supervised learning approaches. There are two main problems in label inference: how to measure the confidence of the unlabeled data and how to generalize the classifier. We address these two problems via the generative framework and a novel convolution-block-transformation technique, respectively. To stabilize and speed up the training process of SGGAN, we employ the metric Maximum Mean Discrepancy as the feature matching objective function and achieve larger gain than the standard semi-supervised GANs (SSGANs), narrowing the gap to the supervised methods. Experiments on several benchmark datasets show the effectiveness of the proposed SGGAN on image recognition and facial attribute recognition tasks. By using the training data with only 4% labeled facial attributes, the SGGAN approach can achieve comparable accuracy with leading supervised deep learning methods with all labeled facial attributes.
In this paper we present a method for learning a discriminative classifier from unlabeled or partially labeled data. Our approach is based on an objective function that trades-off mutual information between observed examples and their predicted categ orical class distribution, against robustness of the classifier to an adversarial generative model. The resulting algorithm can either be interpreted as a natural generalization of the generative adversarial networks (GAN) framework or as an extension of the regularized information maximization (RIM) framework to robust classification against an optimal adversary. We empirically evaluate our method - which we dub categorical generative adversarial networks (or CatGAN) - on synthetic data as well as on challenging image classification tasks, demonstrating the robustness of the learned classifiers. We further qualitatively assess the fidelity of samples generated by the adversarial generator that is learned alongside the discriminative classifier, and identify links between the CatGAN objective and discriminative clustering algorithms (such as RIM).
Generative Adversarial Networks (GANs) based semi-supervised learning (SSL) approaches are shown to improve classification performance by utilizing a large number of unlabeled samples in conjunction with limited labeled samples. However, their perfor mance still lags behind the state-of-the-art non-GAN based SSL approaches. We identify that the main reason for this is the lack of consistency in class probability predictions on the same image under local perturbations. Following the general literature, we address this issue via label consistency regularization, which enforces the class probability predictions for an input image to be unchanged under various semantic-preserving perturbations. In this work, we introduce consistency regularization into the vanilla semi-GAN to address this critical limitation. In particular, we present a new composite consistency regularization method which, in spirit, leverages both local consistency and interpolation consistency. We demonstrate the efficacy of our approach on two SSL image classification benchmark datasets, SVHN and CIFAR-10. Our experiments show that this new composite consistency regularization based semi-GAN significantly improves its performance and achieves new state-of-the-art performance among GAN-based SSL approaches.
55 - Ping Guo 2017
Discovering pulsars is a significant and meaningful research topic in the field of radio astronomy. With the advent of astronomical instruments such as he Five-hundred-meter Aperture Spherical Telescope (FAST) in China, data volumes and data rates ar e exponentially growing. This fact necessitates a focus on artificial intelligence (AI) technologies that can perform the automatic pulsar candidate identification to mine large astronomical data sets. Automatic pulsar candidate identification can be considered as a task of determining potential candidates for further investigation and eliminating noises of radio frequency interferences or other non-pulsar signals. It is very hard to raise the performance of DCNN-based pulsar identification because the limited training samples restrict network structure to be designed deep enough for learning good features as well as the crucial class imbalance problem due to very limited number of real pulsar samples. To address these problems, we proposed a framework which combines deep convolution generative adversarial network (DCGAN) with support vector machine (SVM) to deal with imbalance class problem and to improve pulsar identification accuracy. DCGAN is used as sample generation and feature learning model, and SVM is adopted as the classifier for predicting candidates labels in the inference stage. The proposed framework is a novel technique which not only can solve imbalance class problem but also can learn discriminative feature representations of pulsar candidates instead of computing hand-crafted features in preprocessing steps too, which makes it more accurate for automatic pulsar candidate selection. Experiments on two pulsar datasets verify the effectiveness and efficiency of our proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا