ﻻ يوجد ملخص باللغة العربية
This study evaluated generative methods to potentially mitigate AI bias when diagnosing diabetic retinopathy (DR) resulting from training data imbalance, or domain generalization which occurs when deep learning systems (DLS) face concepts at test/inference time they were not initially trained on. The public domain Kaggle-EyePACS dataset (88,692 fundi and 44,346 individuals, originally diverse for ethnicity) was modified by adding clinician-annotated labels and constructing an artificial scenario of data imbalance and domain generalization by disallowing training (but not testing) exemplars for images of retinas with DR warranting referral (DR-referable) and from darker-skin individuals, who presumably have greater concentration of melanin within uveal melanocytes, on average, contributing to retinal image pigmentation. A traditional/baseline diagnostic DLS was compared against new DLSs that would use training data augmented via generative models for debiasing. Accuracy (95% confidence intervals [CI]) of the baseline diagnostics DLS for fundus images of lighter-skin individuals was 73.0% (66.9%, 79.2%) vs. darker-skin of 60.5% (53.5%, 67.3%), demonstrating bias/disparity (delta=12.5%) (Welch t-test t=2.670, P=.008) in AI performance across protected subpopulations. Using novel generative methods for addressing missing subpopulation training data (DR-referable darker-skin) achieved instead accuracy, for lighter-skin, of 72.0% (65.8%, 78.2%), and for darker-skin, of 71.5% (65.2%,77.8%), demonstrating closer parity (delta=0.5%) in accuracy across subpopulations (Welch t-test t=0.111, P=.912). Findings illustrate how data imbalance and domain generalization can lead to disparity of accuracy across subpopulations, and show that novel generative methods of synthetic fundus images may play a role for debiasing AI.
Dry eye disease (DED) has a prevalence of between 5 and 50%, depending on the diagnostic criteria used and population under study. However, it remains one of the most underdiagnosed and undertreated conditions in ophthalmology. Many tests used in the
As the advancement of deep learning (DL), the Internet of Things and cloud computing techniques for biomedical and healthcare problems, mobile healthcare systems have received unprecedented attention. Since DL techniques usually require enormous amou
The ability to use symbols is the pinnacle of human intelligence, but has yet to be fully replicated in machines. Here we argue that the path towards symbolically fluent artificial intelligence (AI) begins with a reinterpretation of what symbols are,
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif
As artificial intelligence (AI) systems become increasingly ubiquitous, the topic of AI governance for ethical decision-making by AI has captured public imagination. Within the AI research community, this topic remains less familiar to many researche