ترغب بنشر مسار تعليمي؟ اضغط هنا

Field-dependent heat transport in the Kondo insulator SmB6 : phonons scattered by magnetic impurities

121   0   0.0 ( 0 )
 نشر من قبل Marie-Eve Boulanger
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The thermal conductivity $kappa$ of the Kondo insulator SmB$_6$ was measured at low temperature, down to 70 mK, in magnetic fields up to 15 T, on single crystals grown using both the floating-zone and the flux methods. The residual linear term $kappa_0/T$ at $T to 0$ is found to be zero in all samples, for all magnetic fields, in agreement with previous studies. There is therefore no clear evidence of fermionic heat carriers. In contrast to some prior data, we observe a large enhancement of $kappa(T)$ with increasing field. The effect of field is anisotropic, depending on the relative orientation of field and heat current (parallel or perpendicular), and with respect to the cubic crystal structure. We interpret our data in terms of heat transport predominantly by phonons, which are scattered by magnetic impurities.

قيم البحث

اقرأ أيضاً

319 - F. Chen , C. Shang , Z. Jin 2013
Recently, the resistance saturation at low temperature in Kondo insulator SmB6, a long-standing puzzle in condensed matter physics, was proposed to originate from topological surface state. Here,we systematically studied the magnetoresistance of SmB6 at low temperature up to 55 Tesla. Both temperature- and angular-dependent magnetoresistances show a similar crossover behavior below 5 K. Furthermore, the angular-dependent magnetoresistance on different crystal face confirms a two-dimensional surface state as the origin of magnetoresistances crossover below 5K. Based on two-channels model consisting of both surface and bulk states, the field-dependence of bulk gap with critical magnetic field (Hc) of 196 T is extracted from our temperature-dependent resistance under different magnetic fields. Our results give a consistent picture to understand the low-temperature transport behavior in SmB6, consistent with topological Kondo insulator scenario.
We present a detailed investigation of the temperature and depth dependence of the magnetic properties of 3D topological Kondo insulator SmB6 , in particular near its surface. We find that local magnetic field fluctuations detected in the bulk are su ppressed rapidly with decreasing depths, disappearing almost completely at the surface. We attribute the magnetic excitations to spin excitons in bulk SmB6 , which produce local magnetic fields of about ~1.8 mT fluctuating on a time scale of ~60 ns. We find that the excitonic fluctuations are suppressed when approaching the surface on a length scale of 40-90 nm, accompanied by a small enhancement in static magnetic fields. We associate this length scale to the size of the excitonic state.
Using inelastic neutron scattering, we map a 14 meV coherent resonant mode in the topological Kondo insulator SmB6 and describe its relation to the low energy insulating band structure. The resonant intensity is confined to the X and R high symmetry points, repeating outside the first Brillouin zone and dispersing less than 2 meV, with a 5d-like magnetic form factor. We present a slave-boson treatment of the Anderson Hamiltonian with a third neighbor dominated hybridized band structure. This approach produces a spin exciton below the charge gap with features that are consistent with the observed neutron scattering. We find that maxima in the wave vector dependence of the inelastic neutron scattering indicate band inversion.
Since its discovery as a Kondo insulator 50 years ago, SmB6 recently received a revival of interest due to detection of unexpected quantum oscillations in the insulating state, discovery of disorder-immune bulk transport, and proposals of correlation -driven topological physics. While recent transport results attribute the anomalous low temperature conduction to two-dimensional surface states, important alternatives, such as conduction channel residing in one-dimensional dislocation lines, have not been adequately explored. Here we study SmB6 with scanning microwave impedance microscopy and uncover evidence for conducting one-dimensional states terminating at surface step edges. These states remain conducting up to room temperature, indicating unusual robustness against scattering and an unconventional origin. Our results bring to light a heretofore undetected conduction route in SmB6 that contributes to the low temperature transport. The unique scenario of intrinsic one-dimensional conducting channels in a highly insulating correlated bulk offers a one-dimensional platform that may host exotic physics.
Temperature dependence of the electronic structure of SmB6 is studied by high-resolution ARPES down to 1 K. We demonstrate that there is no essential difference for the dispersions of the surface states below and above the resistivity saturating anom aly (~ 3.5 K). Quantitative analyses of the surface states indicate that the quasi-particle scattering rate increases linearly as a function of temperature and binding energy, which differs from Fermi-Liquid behavior. Most intriguingly, we observe that the hybridization between the d and f states builds gradually over a wide temperature region (30 K < T < 110 K). The surface states appear when the hybridization starts to develop. Our detailed temperature-dependence results give a complete interpretation of the exotic resistivity result of SmB6, as well as the discrepancies among experimental results concerning the temperature regions in which the topological surface states emerge and the Kondo gap opens, and give new insights into the exotic Kondo crossover and its relationship with the topological surface states in the topological Kondo insulator SmB6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا