ترغب بنشر مسار تعليمي؟ اضغط هنا

Interaction Driven Subgap Spin Exciton in the Kondo Insulator SmB6

56   0   0.0 ( 0 )
 نشر من قبل Wesley Fuhrman
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using inelastic neutron scattering, we map a 14 meV coherent resonant mode in the topological Kondo insulator SmB6 and describe its relation to the low energy insulating band structure. The resonant intensity is confined to the X and R high symmetry points, repeating outside the first Brillouin zone and dispersing less than 2 meV, with a 5d-like magnetic form factor. We present a slave-boson treatment of the Anderson Hamiltonian with a third neighbor dominated hybridized band structure. This approach produces a spin exciton below the charge gap with features that are consistent with the observed neutron scattering. We find that maxima in the wave vector dependence of the inelastic neutron scattering indicate band inversion.

قيم البحث

اقرأ أيضاً

Since its discovery as a Kondo insulator 50 years ago, SmB6 recently received a revival of interest due to detection of unexpected quantum oscillations in the insulating state, discovery of disorder-immune bulk transport, and proposals of correlation -driven topological physics. While recent transport results attribute the anomalous low temperature conduction to two-dimensional surface states, important alternatives, such as conduction channel residing in one-dimensional dislocation lines, have not been adequately explored. Here we study SmB6 with scanning microwave impedance microscopy and uncover evidence for conducting one-dimensional states terminating at surface step edges. These states remain conducting up to room temperature, indicating unusual robustness against scattering and an unconventional origin. Our results bring to light a heretofore undetected conduction route in SmB6 that contributes to the low temperature transport. The unique scenario of intrinsic one-dimensional conducting channels in a highly insulating correlated bulk offers a one-dimensional platform that may host exotic physics.
The Kondo insulator compound SmB6 has emerged as a strong candidate for the realization of a topologically nontrivial state in a strongly correlated system, a topological Kondo insulator, which can be a novel platform for investigating the interplay between nontrivial topology and emergent correlation driven phenomena in solid state systems. Electronic transport measurements on this material, however, so far showed only the robust surface dominated charge conduction at low temperatures, lacking evidence of its connection to the topological nature by showing, for example, spin polarization due to spin momentum locking. Here, we find evidence for surface state spin polarization by electrical detection of a current induced spin chemical potential difference on the surface of a SmB6 single crystal. We clearly observe a surface dominated spin voltage, which is proportional to the projection of the spin polarization onto the contact magnetization, is determined by the direction and magnitude of the charge current and is strongly temperature dependent due to the crossover from surface to bulk conduction. We estimate the lower bound of the surface state net spin polarization as 15 percent based on the quantum transport model providing direct evidence that SmB6 supports metallic spin helical surface states.
108 - W. T. Fuhrman , P. Nikolic 2014
Samarium hexaboride (SmB$_6$) is the first strongly correlated material with a recognized non-trivial band-structure topology. Its electron correlations are seen by inelastic neutron scattering as a coherent collective excitation at the energy of 14 meV. Here we calculate the spectrum of this mode using a perturbative slave boson method. Our starting point is the recently constructed Anderson model that properly captures the band-structure topology of SmB$_6$. Most self-consistent renormalization effects are captured by a few phenomenological parameters whose values are fitted to match the calculated and experimentally measured mode spectrum in the first Brillouin zone. A simple band-structure of low-energy quasiparticles in SmB$_6$ is also modeled through this fitting procedure, because the important renormalization effects due to Coulomb interactions are hard to calculate by ab-initio methods. Despite involving uncontrolled approximations, the slave boson calculation is capable of producing a fairly good quantitative match of the energy spectrum, and a qualitative match of the spectral weight throughout the first Brillouin zone. We find that the fitted band-structure required for this match indeed puts SmB$_6$ in the class of strong topological insulators. Our analysis thus provides a detailed physical picture of how the SmB$_6$ band topology arises from strong electron interactions, and paints the collective mode as magnetically active exciton.
Undoped and slightly Eu-doped SmB6 show the opening of a gap with decreasing temperature below ~150 K. The spectral shapes near the Fermi level (EF) at 15 K have shown strong increase in intensity of a peak at a binding energy (EB) of around 12 meV w ith decreasing the photon energy (hn) from 17 eV down to 7 eV. Angle resolved spectra of SmB6 measured at hn = 35 eV just after the in-situ cleavage showed clear dispersions of several bands in the EB region from EF to 4 eV. Spin-polarized photoelectron spectra were then measured at 12 K and light incidence angle of ~50 deg. In contrast to the lack of spin polarization for the linearly polarized light excitation, clear spin polarization was observed in the case of circularly polarized light excitation. The two prominent peaks at EB~12 and ~150 meV have shown opposite signs of spin polarization which are reversed when the helicity of the light is reversed. The sign and the magnitude of spin- polarization are consistent with a theoretical prediction for the 6H5/2 and 6H7/2 states.
Bulk and surface state contributions to the electrical resistance of single-crystal samples of the topological Kondo insulator compound SmB6 are investigated as a function of crystal thickness and surface charge density, the latter tuned by ionic liq uid gating with electrodes patterned in a Corbino disk geometry on a single surface. By separately tuning bulk and surface conduction channels, we show conclusive evidence for a model with an insulating bulk and metallic surface states, with a crossover temperature that depends solely on the relative contributions of each conduction channel. The surface conductance, on the order of 100 e^2/h and electron-like, exhibits a field-effect mobility of 133 cm^2/V/s and a large carrier density of ~2x10^{14}/cm^2, in good agreement with recent photoemission results. With the ability to gate-modulate surface conduction by more than 25%, this approach provides promise for both fundamental and applied studies of gate-tuned devices structured on bulk crystal samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا