ﻻ يوجد ملخص باللغة العربية
Since its discovery as a Kondo insulator 50 years ago, SmB6 recently received a revival of interest due to detection of unexpected quantum oscillations in the insulating state, discovery of disorder-immune bulk transport, and proposals of correlation-driven topological physics. While recent transport results attribute the anomalous low temperature conduction to two-dimensional surface states, important alternatives, such as conduction channel residing in one-dimensional dislocation lines, have not been adequately explored. Here we study SmB6 with scanning microwave impedance microscopy and uncover evidence for conducting one-dimensional states terminating at surface step edges. These states remain conducting up to room temperature, indicating unusual robustness against scattering and an unconventional origin. Our results bring to light a heretofore undetected conduction route in SmB6 that contributes to the low temperature transport. The unique scenario of intrinsic one-dimensional conducting channels in a highly insulating correlated bulk offers a one-dimensional platform that may host exotic physics.
Bulk and surface state contributions to the electrical resistance of single-crystal samples of the topological Kondo insulator compound SmB6 are investigated as a function of crystal thickness and surface charge density, the latter tuned by ionic liq
SmB6 is a strongly correlated mixed-valence Kondo insulator with a newly discovered surface state, proposed to be of non-trivial topological origin. However, the surface state dominates electrical conduction only below T* ~ 4 K limiting its scientifi
Temperature dependence of the electronic structure of SmB6 is studied by high-resolution ARPES down to 1 K. We demonstrate that there is no essential difference for the dispersions of the surface states below and above the resistivity saturating anom
The concept of a topological Kondo insulator (TKI) has been brought forward as a new class of topological insulators in which non-trivial surface states reside in the bulk Kondo band gap at low temperature due to the strong spin-orbit coupling [1-3].
We study the transport properties of the Kondo insulator SmB$_6$ with a specialized configuration designed to distinguish bulk-dominated conduction from surface-dominated conduction. We find that as the material is cooled below 4 K, it exhibits a cro