ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Algorithms for Classical Probability Distributions

70   0   0.0 ( 0 )
 نشر من قبل Aleksandrs Belovs
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aleksandrs Belovs




اسأل ChatGPT حول البحث

We study quantum algorithms working on classical probability distributions. We formulate four different models for accessing a classical probability distribution on a quantum computer, which are derived from previous work on the topic, and study their mutual relationships. Additionally, we prove that quantum query complexity of distinguishing two probability distributions is given by their inverse Hellinger distance, which gives a quadratic improvement over classical query complexity for any pair of distributions. The results are obtained by using the adversary method for state-generating input oracles and for distinguishing probability distributions on input strings.



قيم البحث

اقرأ أيضاً

We give efficient quantum algorithms to estimate the partition function of (i) the six vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi 2D square latt ice, and (iv) the Z_2 lattice gauge theory on a three-dimensional square lattice. Moreover, we prove that these problems are BQP-complete, that is, that estimating these partition functions is as hard as simulating arbitrary quantum computation. The results are proven for a complex parameter regime of the models. The proofs are based on a mapping relating partition functions to quantum circuits introduced in [Van den Nest et al., Phys. Rev. A 80, 052334 (2009)] and extended here.
We consider the task of estimating the expectation value of an $n$-qubit tensor product observable $O_1otimes O_2otimes cdots otimes O_n$ in the output state of a shallow quantum circuit. This task is a cornerstone of variational quantum algorithms f or optimization, machine learning, and the simulation of quantum many-body systems. Here we study its computational complexity for constant-depth quantum circuits and three types of single-qubit observables $O_j$ which are (a) close to the identity, (b) positive semidefinite, (c) arbitrary. It is shown that the mean value problem admits a classical approximation algorithm with runtime scaling as $mathrm{poly}(n)$ and $2^{tilde{O}(sqrt{n})}$ in cases (a,b) respectively. In case (c) we give a linear-time algorithm for geometrically local circuits on a two-dimensional grid. The mean value is approximated with a small relative error in case (a), while in cases (b,c) we satisfy a less demanding additive error bound. The algorithms are based on (respectively) Barvinoks polynomial interpolation method, a polynomial approximation for the OR function arising from quantum query complexity, and a Monte Carlo method combined with Matrix Product State techniques. We also prove a technical lemma characterizing a zero-free region for certain polynomials associated with a quantum circuit, which may be of independent interest.
We address the statistics of continuous weak linear measurement on a few-state quantum system that is subject to a conditioned quantum evolution. For a conditioned evolution, both the initial and final states of the system are fixed: the latter is ac hieved by the post-selection in the end of the evolution. The statistics may drastically differ from the non-conditioned case, and the interference between initial and final states can be observed in the probability distributions of measurement outcomes as well as in the average values exceeding the conventional range of non-conditioned averages. We develop a proper formalism to compute the distributions of measurement outcomes, evaluate and discuss the distributions in experimentally relevant setups. We demonstrate the manifestations of the interference between initial and final states in various regimes. We consider analytically simple examples of non-trivial probability distributions. We reveal peaks (or dips) at half-quantized values of the measurement outputs. We discuss in detail the case of zero overlap between initial and final states demonstrating anomalously big average outputs and sudden jump in time-integrated output. We present and discuss the numerical evaluation of the probability distribution aiming at extend- ing the analytic results and describing a realistic experimental situation of a qubit in the regime of resonant fluorescence.
The aim of device-independent quantum key distribution (DIQKD) is to study protocols that allow the generation of a secret shared key between two parties under minimal assumptions on the devices that produce the key. These devices are merely modeled as black boxes and mathematically described as conditional probability distributions. A major obstacle in the analysis of DIQKD protocols is the huge space of possible black box behaviors. De Finetti theorems can help to overcome this problem by reducing the analysis to black boxes that have an iid structure. Here we show two new de Finetti theorems that relate conditional probability distributions in the quantum set to de Finetti distributions (convex combinations of iid distributions), that are themselves in the quantum set. We also show how one of these de Finetti theorems can be used to enforce some restrictions onto the attacker of a DIQKD protocol. Finally we observe that some desirable strengthenings of this restriction, for instance to collective attacks only, are not straightforwardly possible.
54 - Sergey Bravyi , David Gosset , 2021
We study the forrelation problem: given a pair of $n$-bit boolean functions $f$ and $g$, estimate the correlation between $f$ and the Fourier transform of $g$. This problem is known to provide the largest possible quantum speedup in terms of its quer y complexity and achieves the landmark oracle separation between the complexity class BQP and the Polynomial Hierarchy. Our first result is a classical algorithm for the forrelation problem which has runtime $O(n2^{n/2})$. This is a nearly quadratic improvement over the best previously known algorithm. Secondly, we introduce a graph-based forrelation problem where $n$ binary variables live at vertices of some fixed graph and the functions $f,g$ are products of terms dscribing interactions between nearest-neighbor variables. We show that the graph-based forrelation problem can be solved on a classical computer in time $O(n^2)$ for any bipartite graph, any planar graph, or, more generally, any graph which can be partitioned into two subgraphs of constant treewidth. The graph-based forrelation is simply related to the variational energy achieved by the Quantum Approximate Optimization Algorithm (QAOA) with two entangling layers and Ising-type cost functions. By exploiting the connection between QAOA and the graph-based forrelation we were able to simulate the recently proposed Recurisve QAOA with two entangling layers and 225 qubits on a laptop computer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا