ﻻ يوجد ملخص باللغة العربية
The possibility of performing simultaneous measurements in quantum mechanics is investigated in the context of the Curie-Weiss model for a projective measurement. Concretely, we consider a spin-$frac{1}{2}$ system simultaneously interacting with two magnets, which act as measuring apparatuses of two different spin components. We work out the dynamics of this process and determine the final state of the measuring apparatuses, from which we can find the probabilities of the four possible outcomes of the measurements. The measurement is found to be non-ideal, as (i) the joint statistics do not coincide with the one obtained by separately measuring each spin component, and (ii) the density matrix of the spin does not collapse in either of the measured observables. However, we give an operational interpretation of the process as a generalised quantum measurement, and show that it is fully informative: The expected value of the measured spin components can be found with arbitrary precision for sufficiently many runs of the experiment.
We consider the temporal correlations of the quantum state of a qubit subject to simultaneous continuous measurement of two non-commuting qubit observables. Such qubit state correlators are defined for an ensemble of qubit trajectories, which has the
We address the statistics of a simultaneous CWLM of two non-commuting variables on a few-state quantum system subject to a conditioned evolution. Both conditioned quantum measurement and that of two non-commuting variables differ drastically for eith
Quantun non-demolition (QND) variables are generlized to the nonlocal ones by proposing QND measurement networks of Bell states and multi-partite GHZ states, which means that we can generate and measure them without any destruction. One of its prospe
An alternative approach to decoherence, named non-dynamical decoherence is developed and used to resolve the quantum measurement problem. According to decoherence, the observed system is open to a macroscopic apparatus(together with a possible added
The two-mode quantum Rabi model with bilinear coupling is studied using extended squeezed states. We derive $G$-functions for each Bargmann index $q$% . They share a common structure with the $G$-function of the one-photon and two-photon quantum Rabi