ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous measurement of two non-commuting quantum variables: Solution of a dynamical model

97   0   0.0 ( 0 )
 نشر من قبل Marti Perarnau-Llobet
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The possibility of performing simultaneous measurements in quantum mechanics is investigated in the context of the Curie-Weiss model for a projective measurement. Concretely, we consider a spin-$frac{1}{2}$ system simultaneously interacting with two magnets, which act as measuring apparatuses of two different spin components. We work out the dynamics of this process and determine the final state of the measuring apparatuses, from which we can find the probabilities of the four possible outcomes of the measurements. The measurement is found to be non-ideal, as (i) the joint statistics do not coincide with the one obtained by separately measuring each spin component, and (ii) the density matrix of the spin does not collapse in either of the measured observables. However, we give an operational interpretation of the process as a generalised quantum measurement, and show that it is fully informative: The expected value of the measured spin components can be found with arbitrary precision for sufficiently many runs of the experiment.



قيم البحث

اقرأ أيضاً

We consider the temporal correlations of the quantum state of a qubit subject to simultaneous continuous measurement of two non-commuting qubit observables. Such qubit state correlators are defined for an ensemble of qubit trajectories, which has the same fixed initial state and can also be optionally constrained by a fixed final state. We develop a stochastic path integral description for the continuous quantum measurement and use it to calculate the considered correlators. Exact analytic results are possible in the case of ideal measurements of equal strength and are also shown to agree with solutions obtained using the Fokker-Planck equation. For a more general case with decoherence effects and inefficiency, we use a diagrammatic approach to find the correlators perturbatively in the quantum efficiency. We also calculate the state correlators for the quantum trajectories which are extracted from readout signals measured in a transmon qubit experiment, by means of the quantum Bayesian state update. We find an excellent agreement between the correlators based on the experimental data and those obtained from our analytical and numerical results.
We address the statistics of a simultaneous CWLM of two non-commuting variables on a few-state quantum system subject to a conditioned evolution. Both conditioned quantum measurement and that of two non-commuting variables differ drastically for eith er classical or quantum projective measurement, and we explore the peculiarities brought by the combination of the two. We put forward a proper formalism for the evaluation of the distributions of measurement outcomes. We compute and discuss the statistics in idealized and experimentally relevant setups. We demonstrate the visibility and manifestations of the interference between initial and final states in the statistics of measurement outcomes for both variables in various regimes. We analytically predict the peculiarities at the circle ${cal O}^2_1+{cal O}^2_2=1$ in the distribution of measurement outcomes in the limit of short measurement times and confirm this by numerical calculation at longer measurement times. We demonstrate analytically anomalously large values of the time-integrated output cumulants in the limit of short measurement times(sudden jump) and zero overlap between initial and final states, and give the detailed distributions. We present the numerical evaluation of the probability distributions for experimentally relevant parameters in several regimes and demonstrate that interference effects in the conditioned measurement can be accurately predicted even if they are small.
70 - Guo-Ping Guo , Chuan-Feng Li , 2001
Quantun non-demolition (QND) variables are generlized to the nonlocal ones by proposing QND measurement networks of Bell states and multi-partite GHZ states, which means that we can generate and measure them without any destruction. One of its prospe ctive applications in the quantum authentication system of the Quantum Security Automatic Teller Machine (QSATM) which is much more reliable than the classical ones is also presented.
352 - Yu-Lei Feng , Yi-Xin Chen 2014
An alternative approach to decoherence, named non-dynamical decoherence is developed and used to resolve the quantum measurement problem. According to decoherence, the observed system is open to a macroscopic apparatus(together with a possible added environment) in a quantum measurement process. We show that this open system can be well described by an almost quotient Hilbert space formed phenomenally according to some stability conditions. A group of random phase unitary operators is introduced further to obtain an exact quotient space for the observed system. In this quotient space, a density matrix can be constructed to give the Borns probability rule, realizing a (non-dynamical) decoherence. The concept of the (almost) quotient space can also be used to explain the classical properties of a macroscopic system. We show further that the definite outcomes in a quantum measurement are mainly caused by the almost quotient space of the macroscopic apparatus.
316 - Liwei Duan , Shu He , D. Braak 2014
The two-mode quantum Rabi model with bilinear coupling is studied using extended squeezed states. We derive $G$-functions for each Bargmann index $q$% . They share a common structure with the $G$-function of the one-photon and two-photon quantum Rabi models. The regular spectrum is given by zeros of the $G$-function while the conditions for the presence of doubly degenerate (exceptional) eigenvalues are obtained in closed form through the lifting property. The simple singularity structure of the $G$-function allows to draw conclusions about the distribution of eigenvalues along the real axis and to understand the spectral collapse phenomenon when the coupling reaches a critical value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا