ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating Spatiotemporal Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based Modelling Approach

154   0   0.0 ( 0 )
 نشر من قبل Mikhail Prokopenko
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present ACEMod, an agent-based modelling framework for studying influenza epidemics in Australia. The simulator is designed to analyse the spatiotemporal spread of contagion and influenza spatial synchrony across the nation. The individual-based epidemiological model accounts for mobility (worker and student commuting) patterns and human interactions derived from the 2006 Australian census and other national data sources. The high-precision simulation comprises 19.8 million stochastically generated software agents and traces the dynamics of influenza viral infection and transmission at several scales. Using this approach, we are able to synthesise epidemics in Australia with varying outbreak locations and severity. For each scenario, we investigate the spatiotemporal profiles of these epidemics, both qualitatively and quantitatively, via incidence curves, prevalence choropleths, and epidemic synchrony. This analysis exemplifies the nature of influenza pandemics within Australia and facilitates future planning of effective intervention, mitigation and crisis management strategies.



قيم البحث

اقرأ أيضاً

To forecast the time dynamics of an epidemic, we propose a discrete stochastic model that unifies and generalizes previous approaches to the subject. Viewing a given population of individuals or groups of individuals with given health state attribute s as living in and moving between the nodes of a graph, we use Monte-Carlo Markov Chain techniques to simulate the movements and health state changes of the individuals according to given probabilities of stay that have been preassigned to each of the nodes. We utilize this model to either capture and predict the future geographic evolution of an epidemic in time, or the evolution of an epidemic inside a heterogeneous population which is divided into homogeneous sub-populations, or, more generally, its evolution in a combination or superposition of the previous two contexts. We also prove that when the size of the population increases and a natural hypothesis is satisfied, the stochastic process associated to our model converges to a deterministic process. Indeed, when the length of the time step used in the discrete model converges to zero, in the limit this deterministic process is driven by a differential equation yielding the evolution of the expectation value of the number of infected as a function of time. In the second part of the paper, we apply our model to study the evolution of the Covid-19 epidemic. We deduce a decomposition of the function yielding the number of infectious individuals into wavelets, which allows to trace in time the expectation value for the number of infections inside each sub-population. Within this framework, we also discuss possible causes for the occurrence of multiple epidemiological waves.
155 - Pei Lv , Quan Zhang , Boya Xu 2021
Corona Virus Disease 2019 (COVID-19), due to its extremely high infectivity, has been spreading rapidly around the world and bringing huge influence to socioeconomic development as well as peoples daily life. Taking for example the virus transmission that may occur after college students return to school, we analyze the quantitative influence of the key factors on the virus spread, including crowd density and self-protection. One Campus Virus Infection and Control Simulation model (CVICS) of the novel coronavirus is proposed in this paper, fully considering the characteristics of repeated contact and strong mobility of crowd in the closed environment. Specifically, we build an agent-based infection model, introduce the mean field theory to calculate the probability of virus transmission, and micro-simulate the daily prevalence of infection among individuals. The experimental results show that the proposed model in this paper efficiently simulate how the virus spread in the dense crowd in frequent contact under closed environment. Furthermore, preventive and control measures such as self-protection, crowd decentralization and isolation during the epidemic can effectively delay the arrival of infection peak and reduce the prevalence, and finally lower the risk of COVID-19 transmission after the students return to school.
This paper is concerned with a family of Reaction-Diffusion systems that we introduced in [15], and that generalizes the SIR type models from epidemiology. Such systems are now also used to describe collective behaviors.In this paper, we propose a mo deling approach for these apparently diverse phenomena through the example of the dynamics of social unrest. The model involves two quantities: the level of social unrest, or more generally activity, u, and a field of social tension v, which play asymmetric roles. We think of u as the actually observed or explicit quantity while v is an ambiant, sometimes implicit, field of susceptibility that modulates the dynamics of u. In this article, we explore this class of model and prove several theoretical results based on the framework developed in [15], of which the present work is a companion paper. We particularly emphasize here two subclasses of systems: tension inhibiting and tension enhancing. These are characterized by respectively a negative or a positivefeedback of the unrest on social tension. We establish several properties for these classes and also study some extensions. In particular, we describe the behavior of the system following an initial surge of activity. We show that the model can give rise to many diverse qualitative dynamics. We also provide a variety of numerical simulations to illustrate our results and to reveal further properties and open questions.
It has been recently discovered that the measles virus can wipe out the adaptive immune system, destroying B lymphocytes and reducing the diversity of non-specific B cells of the infected host. In particular, this implies that previously acquired imm unization from vaccination or direct exposition to other pathogens could be erased in a phenomenon named immune amnesia, whose effects can become particularly worrisome given the actual rise of anti-vaccination movements. Here we present the first attempt to incorporate immune amnesia into standard models of epidemic spreading. In particular, we analyze diverse variants of a model that describes the spreading of two concurrent pathogens causing measles and another generic disease: the SIR-IA model. Analytical and computational studies confirm that immune amnesia can indeed have important consequences for epidemic spreading, significantly altering the vaccination coverage required to reach herd-immunity for concurring infectious diseases. More specifically, we uncover the existence of novel propagating and endemic phases which are induced by immune amnesia, that appear both in fully-connected and more structured networks, such as random networks and power-law degree-distributed ones. In particular, the transitions from a quiescent state into these novel phases can become rather abrupt in some cases that we specifically analyze. Furthermore, we discuss the meaning and consequences of our results and their relation with, e.g., immunization strategies, together with the possibility that explosive types of transitions may emerge, making immune-amnesia effects particularly dramatic. This work opens the door to further developments and analyses of immune amnesia effects, contributing, more generally, to the theory of interacting epidemics on complex networks.
Electricity market modelling is often used by governments, industry and agencies to explore the development of scenarios over differing timeframes. For example, how would the reduction in cost of renewable energy impact investments in gas power plant s or what would be an optimum strategy for carbon tax or subsidies? Cost optimization based solutions are the dominant approach for understanding different long-term energy scenarios. However, these types of models have certain limitations such as the need to be interpreted in a normative manner, and the assumption that the electricity market remains in equilibrium throughout. Through this work, we show that agent-based models are a viable technique to simulate decentralised electricity markets. The aim of this paper is to validate an agent-based modelling framework to increase confidence in its ability to be used in policy and decision making. Our framework can model heterogeneous agents with imperfect information. The model uses a rules-based approach to approximate the underlying dynamics of a real world, decentralised electricity market. We use the UK as a case study, however, our framework is generalisable to other countries. We increase the temporal granularity of the model by selecting representative days of electricity demand and weather using a $k$-means clustering approach. We show that our framework can model the transition from coal to gas observed in the UK between 2013 and 2018. We are also able to simulate a future scenario to 2035 which is similar to the UK Government, Department for Business and Industrial Strategy (BEIS) projections. We show a more realistic increase in nuclear power over this time period. This is due to the fact that with current nuclear technology, electricity is generated almost instantaneously and has a low short-run marginal cost cite{Department2016}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا