ﻻ يوجد ملخص باللغة العربية
We study the problem of injecting single electrons into interacting one-dimensional quantum systems, a fundamental building block for electron quantum optics. It is well known that such injection leads to charge and energy fractionalization. We elucidate this concept by calculating the nonequilibrium electron distribution function in the momentum and energy domains after the injection of an energy-resolved electron. Our results shed light on how fractionalization occurs via the creation of particle-hole pairs by the injected electron. In particular, we focus on systems with a pair of counterpropagating channels, and we fully analyze the properties of each chiral fractional excitation which is created by the injection. We suggest possible routes to access their energy and momentum distribution functions in topological quantum Hall or quantum spin-Hall edge states.
One-dimensional lattice with strong spin-orbit interactions (SOI) and Zeeman magnetic field is shown to lead to the formation of a helical charge-density wave (CDW) state near half-filling. Interplay of the magnetic field, SOI constants and the CDW g
Coulomb interactions have a major role in one-dimensional electronic transport. They modify the nature of the elementary excitations from Landau quasiparticles in higher dimensions to collective excitations in one dimension. Here we report the direct
An electron is usually considered to have only one type of kinetic energy, but could it have more, for its spin and charge, or by exciting other electrons? In one dimension (1D), the physics of interacting electrons is captured well at low energies b
A general form of the Hamiltonian for electrons confined to a curved one-dimensional (1D) channel with spin-orbit coupling (SOC) linear in momentum is rederived and is applied to a U-shaped channel. Discretizing the derived continuous 1D Hamiltonian
Electron interactions in and between wires become increasingly complex and important as circuits are scaled to nanometre sizes, or employ reduced-dimensional conductors like carbon nanotubes, nanowires and gated high mobility 2D electron systems. Thi