ﻻ يوجد ملخص باللغة العربية
An electron is usually considered to have only one type of kinetic energy, but could it have more, for its spin and charge, or by exciting other electrons? In one dimension (1D), the physics of interacting electrons is captured well at low energies by the Tomonaga-Luttinger-Liquid (TLL) model, yet little has been observed experimentally beyond this linear regime. Here, we report on measurements of many-body modes in 1D gated-wires using a tunnelling spectroscopy technique. We observe two separate Fermi seas at high energies, associated with spin and charge excitations, together with the emergence of three additional 1D replica modes that strengthen with decreasing wire length. The effective interaction strength in the wires is varied by changing the amount of 1D inter-subband screening by over 45%. Our findings demonstrate the existence of spin-charge separation in the whole energy band outside the low-energy limit of validity of the TLL model, and also set a limit on the validity of the newer nonlinear TLL theory.
We show that a one dimensional disordered conductor with correlated disorder has an extended state and a Landauer resistance that is non-zero in the limit of infinite system size in contrast to the predictions of the scaling theory of Anderson locali
We review recent advances in the field of full counting statistics (FCS) of charge transfer through impurities imbedded into strongly correlated one-dimensional metallic systems, modelled by Tomonaga-Luttinger liquids (TLLs). We concentrate on the ex
We propose a universal quantum computing scheme in which the orthogonal qubit states $|0>$ and $|1>$ are identical in their single-particle spin and charge properties. Each qubit is contained in a single quantum dot and gate operations are induced al
We study the problem of injecting single electrons into interacting one-dimensional quantum systems, a fundamental building block for electron quantum optics. It is well known that such injection leads to charge and energy fractionalization. We eluci
We report an universal behaviour of hopping transport in strongly interacting mesoscopic two-dimensional electron systems (2DES). In a certain window of background disorder, the resistivity at low perpendicular magnetic fields follows the expected re