ﻻ يوجد ملخص باللغة العربية
Electron interactions in and between wires become increasingly complex and important as circuits are scaled to nanometre sizes, or employ reduced-dimensional conductors like carbon nanotubes, nanowires and gated high mobility 2D electron systems. This is because the screening of the long-range Coulomb potential of individual carriers is weakened in these systems, which can lead to phenomenon such as Coulomb drag: a current in one wire induces a voltage in a second wire through Coulomb interactions alone. Previous experiments have observed electron drag in wires separated by a soft electrostatic barrier $gtrsim$ 80 nm. Here, we measure both positive and negative drag between adjacent vertical quantum wires that are separated by $sim$ 15 nm and have independent contacts, which allows their electron densities to be tuned independently. We map out the drag signal versus the number of electron subbands occupied in each wire, and interpret the results in terms of momentum-transfer and charge-fluctuation induced transport models. For wires of significantly different subband occupancies, the positive drag effect can be as large as 25%.
The presence of pronounced electronic correlations in one-dimensional systems strongly enhances Coulomb coupling and is expected to result in distinctive features in the Coulomb drag between them that are absent in the drag between two-dimensional sy
Coulomb drag is a process whereby the repulsive interactions between electrons in spatially separated conductors enable a current flowing in one of the conductors to induce a voltage drop in the other. If the second conductor is part of a closed circ
We evaluate the Coulomb drag current in two finite-length Tomonaga-Luttinger-liquid wires coupled by an electrostatic backscattering interaction. The drag current in one wire shows oscillations as a function of the bias voltage applied to the other w
Recent years have seen a surge of interest in studies of hydrodynamic transport in electronic systems. We investigate the electron viscosity of metals and find a new component that is closely related to Coulomb drag. Using the linear response theory,
Coulomb drag between parallel quantum wells provides a uniquely sensitive measurement of electron correlations since the drag response depends on interactions only. Recently it has been demonstrated that a new regime of strong interactions can be acc