ترغب بنشر مسار تعليمي؟ اضغط هنا

CERN: Confidence-Energy Recurrent Network for Group Activity Recognition

69   0   0.0 ( 0 )
 نشر من قبل Tianmin Shu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work is about recognizing human activities occurring in videos at distinct semantic levels, including individual actions, interactions, and group activities. The recognition is realized using a two-level hierarchy of Long Short-Term Memory (LSTM) networks, forming a feed-forward deep architecture, which can be trained end-to-end. In comparison with existing architectures of LSTMs, we make two key contributions giving the name to our approach as Confidence-Energy Recurrent Network -- CERN. First, instead of using the common softmax layer for prediction, we specify a novel energy layer (EL) for estimating the energy of our predictions. Second, rather than finding the common minimum-energy class assignment, which may be numerically unstable under uncertainty, we specify that the EL additionally computes the p-values of the solutions, and in this way estimates the most confident energy minimum. The evaluation on the Collective Activity and Volleyball datasets demonstrates: (i) advantages of our two contributions relative to the common softmax and energy-minimization formulations and (ii) a superior performance relative to the state-of-the-art approaches.



قيم البحث

اقرأ أيضاً

Group activity recognition aims to understand the activity performed by a group of people. In order to solve it, modeling complex spatio-temporal interactions is the key. Previous methods are limited in reasoning on a predefined graph, which ignores the inherent person-specific interaction context. Moreover, they adopt inference schemes that are computationally expensive and easily result in the over-smoothing problem. In this paper, we manage to achieve spatio-temporal person-specific inferences by proposing Dynamic Inference Network (DIN), which composes of Dynamic Relation (DR) module and Dynamic Walk (DW) module. We firstly propose to initialize interaction fields on a primary spatio-temporal graph. Within each interaction field, we apply DR to predict the relation matrix and DW to predict the dynamic walk offsets in a joint-processing manner, thus forming a person-specific interaction graph. By updating features on the specific graph, a person can possess a global-level interaction field with a local initialization. Experiments indicate both modules effectiveness. Moreover, DIN achieves significant improvement compared to previous state-of-the-art methods on two popular datasets under the same setting, while costing much less computation overhead of the reasoning module.
Human Activity Recognition from body-worn sensor data poses an inherent challenge in capturing spatial and temporal dependencies of time-series signals. In this regard, the existing recurrent or convolutional or their hybrid models for activity recog nition struggle to capture spatio-temporal context from the feature space of sensor reading sequence. To address this complex problem, we propose a self-attention based neural network model that foregoes recurrent architectures and utilizes different types of attention mechanisms to generate higher dimensional feature representation used for classification. We performed extensive experiments on four popular publicly available HAR datasets: PAMAP2, Opportunity, Skoda and USC-HAD. Our model achieve significant performance improvement over recent state-of-the-art models in both benchmark test subjects and Leave-one-subject-out evaluation. We also observe that the sensor attention maps produced by our model is able capture the importance of the modality and placement of the sensors in predicting the different activity classes.
A deep learning approach has been widely applied in sequence modeling problems. In terms of automatic speech recognition (ASR), its performance has significantly been improved by increasing large speech corpus and deeper neural network. Especially, r ecurrent neural network and deep convolutional neural network have been applied in ASR successfully. Given the arising problem of training speed, we build a novel deep recurrent convolutional network for acoustic modeling and then apply deep residual learning to it. Our experiments show that it has not only faster convergence speed but better recognition accuracy over traditional deep convolutional recurrent network. In the experiments, we compare the convergence speed of our novel deep recurrent convolutional networks and traditional deep convolutional recurrent networks. With faster convergence speed, our novel deep recurrent convolutional networks can reach the comparable performance. We further show that applying deep residual learning can boost the convergence speed of our novel deep recurret convolutional networks. Finally, we evaluate all our experimental networks by phoneme error rate (PER) with our proposed bidirectional statistical n-gram language model. Our evaluation results show that our newly proposed deep recurrent convolutional network applied with deep residual learning can reach the best PER of 17.33% with the fastest convergence speed on TIMIT database. The outstanding performance of our novel deep recurrent convolutional neural network with deep residual learning indicates that it can be potentially adopted in other sequential problems.
Deep learning models for human activity recognition (HAR) based on sensor data have been heavily studied recently. However, the generalization ability of deep models on complex real-world HAR data is limited by the availability of high-quality labele d activity data, which are hard to obtain. In this paper, we design a similarity embedding neural network that maps input sensor signals onto real vectors through carefully designed convolutional and LSTM layers. The embedding network is trained with a pairwise similarity loss, encouraging the clustering of samples from the same class in the embedded real space, and can be effectively trained on a small dataset and even on a noisy dataset with mislabeled samples. Based on the learned embeddings, we further propose both nonparametric and parametric approaches for activity recognition. Extensive evaluation based on two public datasets has shown that the proposed similarity embedding network significantly outperforms state-of-the-art deep models on HAR classification tasks, is robust to mislabeled samples in the training set, and can also be used to effectively denoise a noisy dataset.
427 - Alexander Richard 2017
The traditional bag-of-words approach has found a wide range of applications in computer vision. The standard pipeline consists of a generation of a visual vocabulary, a quantization of the features into histograms of visual words, and a classificati on step for which usually a support vector machine in combination with a non-linear kernel is used. Given large amounts of data, however, the model suffers from a lack of discriminative power. This applies particularly for action recognition, where the vast amount of video features needs to be subsampled for unsupervised visual vocabulary generation. Moreover, the kernel computation can be very expensive on large datasets. In this work, we propose a recurrent neural network that is equivalent to the traditional bag-of-words approach but enables for the application of discriminative training. The model further allows to incorporate the kernel computation into the neural network directly, solving the complexity issue and allowing to represent the complete classification system within a single network. We evaluate our method on four recent action recognition benchmarks and show that the conventional model as well as sparse coding methods are outperformed.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا