ترغب بنشر مسار تعليمي؟ اضغط هنا

Cation mono- and co-doped anatase TiO$_2$ nanotubes: An {em ab initio} investigation of electronic and optical properties

394   0   0.0 ( 0 )
 نشر من قبل Ulrich Eckern
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structural, electronic, and optical properties of metal (Si, Ge, Sn, and Pb) mono- and co-doped anatase TiO$_{2}$ nanotubes are investigated, in order to elucidate their potential for photocatalytic applications. It is found that Si doped TiO$_{2}$ nanotubes are more stable than those doped with Ge, Sn, or Pb. All dopants lower the band gap, except the (Ge, Sn) co-doped structure, the decrease depending on the concentration and the type of dopant. Correspondingly, a redshift in the optical properties for all kinds of dopings is obtained. Even though a Pb mono- and co-doped TiO$_{2}$ nanotube has the lowest band gap, these systems are not suitable for water splitting, due to the location of the conduction band edges, in contrast to Si, Ge, and Sn mono-doped TiO$_{2}$ nanotubes. On the other hand, co-doping of TiO$_{2}$ does not improve its photocatalytic properties. Our findings are consistent with recent experiments which show an enhancement of light absorption for Si and Sn doped TiO$_{2}$ nanotubes.

قيم البحث

اقرأ أيضاً

Due to their characteristic geometry, TiO$_2$ nanotubes (TNTs), suitably doped by metal-substitution to enhance their photocatalytic properties, have a high potential for applications such as clean fuel production. In this context, we present a detai led investigation of the magnetic, electronic, and optical properties of transition-metal doped TNTs, based on hybrid density functional theory. In particular, we focus on the $3d$, the $4d$, as well as selected $5d$ transition-metal doped TNTs. Thereby, we are able to explain the enhanced optical activity and photocatalytic sensitivity observed in various experiments. We find, for example, that Cr- and W-doped TNTs can be employed for applications like water splitting and carbon dioxide reduction, and for spintronic devices. The best candidate for water splitting is Fe-doped TNT, in agreement with experimental observations. In addition, our findings provide valuable hints for future experimental studies of the ferromagnetic/spintronic behavior of metal-doped titania nanotubes.
73 - J. C. Tung , G. Y. Guo 2011
Magnetism at the nanoscale has been a very active research area in the past decades, because of its novel fundamental physics and exciting potential applications. We have recently performed an {it ab intio} study of the structural, electronic and mag netic properties of all 3$d$ transition metal (TM) freestanding atomic chains and found that Fe and Ni nanowires have a giant magnetic anisotropy energy (MAE), indicating that these nanowires would have applications in high density magnetic data storages. In this paper, we perform density functional calculations for the Fe, Co and Ni linear atomic chains on Cu(001) surface within the generalized gradient approximation, in order to investigate how the substrates would affect the magnetic properties of the nanowires. We find that Fe, Co and Ni linear chains on Cu(001) surface still have a stable or metastable ferromagnetic state. When spin-orbit coupling (SOC) is included, the spin magnetic moments remain almost unchanged, due to the weakness of SOC in 3$d$ TM chains, whilst significant orbital magnetic moments appear and also are direction-dependent. Finally, we find that the MAE for Fe, and Co remains large, i.e., being not much affected by the presence of Cu substrate.
We study the thermodynamics of bromophenyl functionalization of carbon nanotubes with respect to diameter and metallic/insulating character using density-functional theory (DFT). On one hand, we show that the activation energy for the grafting of a b romophenyl molecule onto a semiconducting zigzag nanotube ranges from 0.73 eV to 0.76 eV without any clear trend with respect to diameter within numerical accuracy. On the other hand, the binding energy of a single bromophenyl molecule shows a clear diameter dependence and ranges from 1.51 eV for a (8,0) zigzag nanotube to 0.83 eV for a (20,0) zigzag nanotube. This is in part explained by the transition from sp2 to sp3 bonding occurring to a carbon atom of a nanotube when a phenyl is grafted to it and the fact that smaller nanotubes are closer to a sp3 hybridization than larger ones due to increased curvature. Since a second bromophenyl unit can attach without energy barrier next to an isolated grafted unit, they are assumed to exist in pairs. The para configuration is found to be favored for the pairs and their binding energy decreases with increasing diameter, ranging from 4.34 eV for a (7,0) nanotube to 2.27 eV for a (29,0) nanotube. An analytic form for this radius dependence is derived using a tight binding hamiltonian and first order perturbation theory. The 1/R^2 dependance obtained (where R is the nanotube radius) is verified by our DFT results within numerical accuracy. Finally, metallic nanotubes are found to be more reactive than semiconducting nanotubes, a feature that can be explained by a non-zero density of states at the Fermi level for metallic nanotubes.
We have investigated polyyne and cumulene prototypes based on the density-functional theory. Our independent-particle spectra show that the various carbynes can be distinguished by optical properties comparing the low-energy spectral structure as wel l as using very general considerations. The latter conclusion is supported by results based on the random-phase approximation including local-field effects.
The spinel-structured lithium manganese oxide (LiMn$_2$O$_4$) is a material currently used as cathode for secondary lithium-ion batteries, but whose properties are not yet fully understood. Here, we report a computational investigation of the inversi on thermodynamics and electronic behaviour of LiMn$_2$O$_4$ derived from spin-polarised density functional theory calculations with a Hubbard Hamiltonian and long-range dispersion corrections (DFT+$U-$D3). Based on the analysis of the configurational free energy, we have elucidated a partially inverse equilibrium cation distribution for the LiMn$_2$O$_4$ spinel. This equilibrium degree of inversion is rationalised in terms of the crystal field stabilisation effects and the difference between the size of the cations. We compare the atomic charges with the oxidation numbers for each degree of inversion. We found segregation of the Mn charge once these ions occupy the tetrahedral and octahedral sites of the spinel. We have obtained the atomic projections of the electronic band structure and density of states, showing that the normal LiMn$_2$O$_4$ has half-metallic properties, while the fully inverse spinel is an insulator. This material is in the ferrimagnetic state for the inverse and partially inverse cation arrangement. The optimised lattice and oxygen parameters, as well as the equilibrium degree of inversion, are in agreement with the available experimental data. The partially inverse equilibrium degree of inversion is important in the interpretation of the lithium ion migration and surface properties of the LiMn$_2$O$_4$ spinel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا