ﻻ يوجد ملخص باللغة العربية
Magnetism at the nanoscale has been a very active research area in the past decades, because of its novel fundamental physics and exciting potential applications. We have recently performed an {it ab intio} study of the structural, electronic and magnetic properties of all 3$d$ transition metal (TM) freestanding atomic chains and found that Fe and Ni nanowires have a giant magnetic anisotropy energy (MAE), indicating that these nanowires would have applications in high density magnetic data storages. In this paper, we perform density functional calculations for the Fe, Co and Ni linear atomic chains on Cu(001) surface within the generalized gradient approximation, in order to investigate how the substrates would affect the magnetic properties of the nanowires. We find that Fe, Co and Ni linear chains on Cu(001) surface still have a stable or metastable ferromagnetic state. When spin-orbit coupling (SOC) is included, the spin magnetic moments remain almost unchanged, due to the weakness of SOC in 3$d$ TM chains, whilst significant orbital magnetic moments appear and also are direction-dependent. Finally, we find that the MAE for Fe, and Co remains large, i.e., being not much affected by the presence of Cu substrate.
We investigate the adsorption of a single tetracyanoethylene (TCNE) molecule on the silver (001) surface. Adsorption structures, electronic properties, and scanning tunneling microscopy (STM) images are calculated within density-functional theory. Ad
Electronic structure of FeGa3 has been studied using experiments and ab-initio calculations. Magnetization measurements show that FeGa3 is inherently diamagnetic in nature. Our studies indicate that the previously reported magnetic moment on the Fe a
We present a Density Functional Theory (DFT) based study of the structural and magnetic properties of the (001) surface of the semiconducting oxide ZnFe2O4 (spinel structure). The calculations were performed using the DFT based ab initio plane wave a
First-principles calculations using density functional theory based on norm-conserving pseudopotentials have been performed to investigate the Cs adsorption on the Si(001) surface for 0.5 and 1 ML coverages. We found that the saturation coverage corr
The structural, electronic, and optical properties of metal (Si, Ge, Sn, and Pb) mono- and co-doped anatase TiO$_{2}$ nanotubes are investigated, in order to elucidate their potential for photocatalytic applications. It is found that Si doped TiO$_{2