ترغب بنشر مسار تعليمي؟ اضغط هنا

$Ab-initio$ investigation of the thermodynamics of cation distribution and the electronic and magnetic structures in the LiMn$_2$O$_4$ spinel

84   0   0.0 ( 0 )
 نشر من قبل David Santos-Carballal
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spinel-structured lithium manganese oxide (LiMn$_2$O$_4$) is a material currently used as cathode for secondary lithium-ion batteries, but whose properties are not yet fully understood. Here, we report a computational investigation of the inversion thermodynamics and electronic behaviour of LiMn$_2$O$_4$ derived from spin-polarised density functional theory calculations with a Hubbard Hamiltonian and long-range dispersion corrections (DFT+$U-$D3). Based on the analysis of the configurational free energy, we have elucidated a partially inverse equilibrium cation distribution for the LiMn$_2$O$_4$ spinel. This equilibrium degree of inversion is rationalised in terms of the crystal field stabilisation effects and the difference between the size of the cations. We compare the atomic charges with the oxidation numbers for each degree of inversion. We found segregation of the Mn charge once these ions occupy the tetrahedral and octahedral sites of the spinel. We have obtained the atomic projections of the electronic band structure and density of states, showing that the normal LiMn$_2$O$_4$ has half-metallic properties, while the fully inverse spinel is an insulator. This material is in the ferrimagnetic state for the inverse and partially inverse cation arrangement. The optimised lattice and oxygen parameters, as well as the equilibrium degree of inversion, are in agreement with the available experimental data. The partially inverse equilibrium degree of inversion is important in the interpretation of the lithium ion migration and surface properties of the LiMn$_2$O$_4$ spinel.

قيم البحث

اقرأ أيضاً

We study the exchange constants of MnV$_2$O$_4$ using magnetic force theorem and local spin density approximation of density functional theory supplemented with a correction due to on-site Hubbard interaction U. We obtain the exchanges for three diff erent orbital orderings of the Vanadium atoms of the spinel. We then map the exchange constants to a Heisenberg model with single-ion anisotropy and solve for the spin-wave excitations in the non-collinear, low temperature phase of the spinel. The single-ion anisotropy parameters are obtained from an atomic multiplet exact-diagonalization program, taking into effect the crystal-field splitting and the spin-orbit coupling. We find good agreement between the spin waves of one of our orbital ordered setups with previously reported experimental spin waves as determined by neutron scattering. We can therefore determine the correct orbital order from various proposals that exist in the literature.
AB$_2$O$_4$ normal spinels with a magnetic B site can host a variety of magnetic and orbital frustrations leading to spin-liquid phases and field-induced phase transitions. Here we report the first epitaxial growth of (111)-oriented MgCr$_2$O$_4$ thi n films. By characterizing the structural and electronic properties of films grown along (001) and (111) directions, the influence of growth orientation has been studied. Despite distinctly different growth modes observed during deposition, the comprehensive characterization reveals no measurable disorder in the cation distribution nor multivalency issue for Cr ions in either orientation. Contrary to a naive expectation, the (111) stabilized films exhibit a smoother surface and a higher degree of crystallinity than (001)-oriented films. The preference in growth orientation is explained within the framework of heteroepitaxial stabilization in connection to a significantly lower (111) surface energy. These findings open broad opportunities in the fabrication of 2D kagome-triangular heterostructures with emergent magnetic behavior inaccessible in bulk crystals.
The effects of tetragonal strain on electronic and magnetic properties of strontium-doped lanthanum manganite, La_{2/3}Sr_{1/3}MnO_3 (LSMO), are investigated by means of density-functional methods. As far as the structural properties are concerned, t he comparison between theory and experiments for LSMO strained on the most commonly used substrates, shows an overall good agreement: the slight overestimate (at most of 1-1.5 %) for the equilibrium out-of-plane lattice constants points to possible defects in real samples. The inclusion of a Hubbard-like contribution on the Mn d states, according to the so-called LSDA+U approach, is rather ineffective from the structural point of view, but much more important from the electronic and magnetic point of view. In particular, full half-metallicity, which is missed within a bare density-functional approach, is recovered within LSDA+U, in agreement with experiments. Moreover, the half-metallic behavior, particularly relevant for spin-injection purposes, is independent on the chosen substrate and is achieved for all the considered in-plane lattice constants. More generally, strain effects are not seen to crucially affect the electronic structure: within the considered tetragonalization range, the minority gap is only slightly (i.e. by about 0.1-0.2 eV) affected by a tensile or compressive strain. Nevertheless, we show that the growth on a smaller in-plane lattice constant can stabilize the out-of-plane vs in-plane e_g orbital and significatively change their relative occupancy. Since e_g orbitals are key quantities for the double-exchange mechanism, strain effects are confirmed to be crucial for the resulting magnetic coupling.
Using realistic low-energy model with parameters derived from the first-principles electronic structure calculation, we address the origin of the quasi-one-dimensional behavior in orthorhombic NaV$_2$O$_4$, consisting of the double chains of edge-sha ring VO$_6$ octahedra. We argue that the geometrical aspect alone does not explain the experimentally observed anisotropy of electronic and magnetic properties of NaV$_2$O$_4$. Instead, we attribute the unique behavior of NaV$_2$O$_4$ to one particular type of the orbital ordering, which respects the orthorhombic $Pnma$ symmetry. This orbital ordering acts to divide all $t_{2g}$ states into two types: the `localized ones, which are antisymmetric with respect to the mirror reflection $y rightarrow -$$y$, and the symmetric `delocalized ones. Thus, NaV$_2$O$_4$ can be classified as the double exchange system. The directional orientation of symmetric orbitals, which form the metallic band, appears to be sufficient to explain both quasi-one-dimensional character of interatomic magnetic interactions and the anisotropy of electrical resistivity.
Fe$M_2X_4$ spinels, where $M$ is a transition metal and $X$ is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. We present here a computational study of the inversion thermodynamics and the electronic structure of these (thio)spinels for $M=$ Cr, Mn, Co, Ni, using calculations based on the density functional theory with on-site Hubbard corrections (DFT+$U$). The analysis of the configurational free energies shows that different behaviour is expected for the equilibrium cation distributions in these structures: FeCr$_2X_4$ and FeMn$_2$S$_4$ are fully normal, FeNi$_2X_4$ and FeCo$_2$S$_4$ are intermediate, and FeCo$_2$O$_4$ and FeMn$_2$O$_4$ are fully inverted. We have analyzed the role played by the size of the ions and by the crystal field stabilization effects in determining the equilibrium inversion degree. We also discuss how the electronic and magnetic structure of these spinels is modified by the degree of inversion, assuming that this could be varied from the equilibrium value. We have obtained electronic densities of states for the completely normal and completely inverse cation distribution of each compound. FeCr$_2X_4$, FeMn$_2X_4$, FeCo$_2$O$_4$ and FeNi$_2$O$_4$ are half-metals in the ferrimagnetic state when Fe is in tetrahedral positions. When $M$ is filling the tetrahedral positions, the Cr-containing compounds and FeMn$_2$O$_4$ are half-metallic systems, while the Co and Ni spinels are insulators. The Co and Ni sulfide counterparts are metallic for any inversion degree together with the inverse FeMn$_2$S$_4$. Our calculations suggest that the spin filtering properties of the Fe$M_2X_4$ (thio)spinels could be modified via the control of the cation distribution through variations in the synthesis conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا